File size: 23,446 Bytes
dc8d70e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import os
from typing import List, Optional, Tuple, Union

import cv2
import insightface
import numpy as np
import torch
from consisid_eva_clip import create_model_and_transforms
from consisid_eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from insightface.app import FaceAnalysis
from PIL import Image, ImageOps
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import normalize, resize
from transformers import T5EncoderModel, T5Tokenizer

from diffusers.models.embeddings import get_3d_rotary_pos_embed
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
from diffusers.utils import load_image


###### pipeline ###
def resize_numpy_image_long(image, resize_long_edge=768):
    """
    Resize the input image to a specified long edge while maintaining aspect ratio.

    Args:
        image (numpy.ndarray): Input image (H x W x C or H x W).
        resize_long_edge (int): The target size for the long edge of the image. Default is 768.

    Returns:
        numpy.ndarray: Resized image with the long edge matching `resize_long_edge`, while maintaining the aspect
        ratio.
    """

    h, w = image.shape[:2]
    if max(h, w) <= resize_long_edge:
        return image
    k = resize_long_edge / max(h, w)
    h = int(h * k)
    w = int(w * k)
    image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
    return image


def img2tensor(imgs, bgr2rgb=True, float32=True):
    """Numpy array to tensor.

    Args:
        imgs (list[ndarray] | ndarray): Input images.
        bgr2rgb (bool): Whether to change bgr to rgb.
        float32 (bool): Whether to change to float32.

    Returns:
        list[tensor] | tensor: Tensor images. If returned results only have
            one element, just return tensor.
    """

    def _totensor(img, bgr2rgb, float32):
        if img.shape[2] == 3 and bgr2rgb:
            if img.dtype == "float64":
                img = img.astype("float32")
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = torch.from_numpy(img.transpose(2, 0, 1))
        if float32:
            img = img.float()
        return img

    if isinstance(imgs, list):
        return [_totensor(img, bgr2rgb, float32) for img in imgs]
    return _totensor(imgs, bgr2rgb, float32)


def to_gray(img):
    """
    Converts an RGB image to grayscale by applying the standard luminosity formula.

    Args:
        img (torch.Tensor): The input image tensor with shape (batch_size, channels, height, width).
                             The image is expected to be in RGB format (3 channels).

    Returns:
        torch.Tensor: The grayscale image tensor with shape (batch_size, 3, height, width).
                      The grayscale values are replicated across all three channels.
    """
    x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
    x = x.repeat(1, 3, 1, 1)
    return x


def process_face_embeddings(
    face_helper_1,
    clip_vision_model,
    face_helper_2,
    eva_transform_mean,
    eva_transform_std,
    app,
    device,
    weight_dtype,
    image,
    original_id_image=None,
    is_align_face=True,
):
    """
    Process face embeddings from an image, extracting relevant features such as face embeddings, landmarks, and parsed
    face features using a series of face detection and alignment tools.

    Args:
        face_helper_1: Face helper object (first helper) for alignment and landmark detection.
        clip_vision_model: Pre-trained CLIP vision model used for feature extraction.
        face_helper_2: Face helper object (second helper) for embedding extraction.
        eva_transform_mean: Mean values for image normalization before passing to EVA model.
        eva_transform_std: Standard deviation values for image normalization before passing to EVA model.
        app: Application instance used for face detection.
        device: Device (CPU or GPU) where the computations will be performed.
        weight_dtype: Data type of the weights for precision (e.g., `torch.float32`).
        image: Input image in RGB format with pixel values in the range [0, 255].
        original_id_image: (Optional) Original image for feature extraction if `is_align_face` is False.
        is_align_face: Boolean flag indicating whether face alignment should be performed.

    Returns:
        Tuple:
            - id_cond: Concatenated tensor of Ante face embedding and CLIP vision embedding
            - id_vit_hidden: Hidden state of the CLIP vision model, a list of tensors.
            - return_face_features_image_2: Processed face features image after normalization and parsing.
            - face_kps: Keypoints of the face detected in the image.
    """

    face_helper_1.clean_all()
    image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    # get antelopev2 embedding
    face_info = app.get(image_bgr)
    if len(face_info) > 0:
        face_info = sorted(face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))[
            -1
        ]  # only use the maximum face
        id_ante_embedding = face_info["embedding"]  # (512,)
        face_kps = face_info["kps"]
    else:
        id_ante_embedding = None
        face_kps = None

    # using facexlib to detect and align face
    face_helper_1.read_image(image_bgr)
    face_helper_1.get_face_landmarks_5(only_center_face=True)
    if face_kps is None:
        face_kps = face_helper_1.all_landmarks_5[0]
    face_helper_1.align_warp_face()
    if len(face_helper_1.cropped_faces) == 0:
        raise RuntimeError("facexlib align face fail")
    align_face = face_helper_1.cropped_faces[0]  # (512, 512, 3)  # RGB

    # incase insightface didn't detect face
    if id_ante_embedding is None:
        print("fail to detect face using insightface, extract embedding on align face")
        id_ante_embedding = face_helper_2.get_feat(align_face)

    id_ante_embedding = torch.from_numpy(id_ante_embedding).to(device, weight_dtype)  # torch.Size([512])
    if id_ante_embedding.ndim == 1:
        id_ante_embedding = id_ante_embedding.unsqueeze(0)  # torch.Size([1, 512])

    # parsing
    if is_align_face:
        input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0  # torch.Size([1, 3, 512, 512])
        input = input.to(device)
        parsing_out = face_helper_1.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
        parsing_out = parsing_out.argmax(dim=1, keepdim=True)  # torch.Size([1, 1, 512, 512])
        bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
        bg = sum(parsing_out == i for i in bg_label).bool()
        white_image = torch.ones_like(input)  # torch.Size([1, 3, 512, 512])
        # only keep the face features
        return_face_features_image = torch.where(bg, white_image, to_gray(input))  # torch.Size([1, 3, 512, 512])
        return_face_features_image_2 = torch.where(bg, white_image, input)  # torch.Size([1, 3, 512, 512])
    else:
        original_image_bgr = cv2.cvtColor(original_id_image, cv2.COLOR_RGB2BGR)
        input = img2tensor(original_image_bgr, bgr2rgb=True).unsqueeze(0) / 255.0  # torch.Size([1, 3, 512, 512])
        input = input.to(device)
        return_face_features_image = return_face_features_image_2 = input

    # transform img before sending to eva-clip-vit
    face_features_image = resize(
        return_face_features_image, clip_vision_model.image_size, InterpolationMode.BICUBIC
    )  # torch.Size([1, 3, 336, 336])
    face_features_image = normalize(face_features_image, eva_transform_mean, eva_transform_std)
    id_cond_vit, id_vit_hidden = clip_vision_model(
        face_features_image.to(weight_dtype), return_all_features=False, return_hidden=True, shuffle=False
    )  # torch.Size([1, 768]),  list(torch.Size([1, 577, 1024]))
    id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
    id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)

    id_cond = torch.cat(
        [id_ante_embedding, id_cond_vit], dim=-1
    )  # torch.Size([1, 512]), torch.Size([1, 768])  ->  torch.Size([1, 1280])

    return (
        id_cond,
        id_vit_hidden,
        return_face_features_image_2,
        face_kps,
    )  # torch.Size([1, 1280]), list(torch.Size([1, 577, 1024]))


def process_face_embeddings_infer(
    face_helper_1,
    clip_vision_model,
    face_helper_2,
    eva_transform_mean,
    eva_transform_std,
    app,
    device,
    weight_dtype,
    img_file_path,
    is_align_face=True,
):
    """
    Process face embeddings from an input image for inference, including alignment, feature extraction, and embedding
    concatenation.

    Args:
        face_helper_1: Face helper object (first helper) for alignment and landmark detection.
        clip_vision_model: Pre-trained CLIP vision model used for feature extraction.
        face_helper_2: Face helper object (second helper) for embedding extraction.
        eva_transform_mean: Mean values for image normalization before passing to EVA model.
        eva_transform_std: Standard deviation values for image normalization before passing to EVA model.
        app: Application instance used for face detection.
        device: Device (CPU or GPU) where the computations will be performed.
        weight_dtype: Data type of the weights for precision (e.g., `torch.float32`).
        img_file_path: Path to the input image file (string) or a numpy array representing an image.
        is_align_face: Boolean flag indicating whether face alignment should be performed (default: True).

    Returns:
        Tuple:
            - id_cond: Concatenated tensor of Ante face embedding and CLIP vision embedding.
            - id_vit_hidden: Hidden state of the CLIP vision model, a list of tensors.
            - image: Processed face image after feature extraction and alignment.
            - face_kps: Keypoints of the face detected in the image.
    """

    # Load and preprocess the input image
    if isinstance(img_file_path, str):
        image = np.array(load_image(image=img_file_path).convert("RGB"))
    else:
        image = np.array(ImageOps.exif_transpose(Image.fromarray(img_file_path)).convert("RGB"))

    # Resize image to ensure the longer side is 1024 pixels
    image = resize_numpy_image_long(image, 1024)
    original_id_image = image

    # Process the image to extract face embeddings and related features
    id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(
        face_helper_1,
        clip_vision_model,
        face_helper_2,
        eva_transform_mean,
        eva_transform_std,
        app,
        device,
        weight_dtype,
        image,
        original_id_image,
        is_align_face,
    )

    # Convert the aligned cropped face image (torch tensor) to a numpy array
    tensor = align_crop_face_image.cpu().detach()
    tensor = tensor.squeeze()
    tensor = tensor.permute(1, 2, 0)
    tensor = tensor.numpy() * 255
    tensor = tensor.astype(np.uint8)
    image = ImageOps.exif_transpose(Image.fromarray(tensor))

    return id_cond, id_vit_hidden, image, face_kps


def prepare_face_models(model_path, device, dtype):
    """
    Prepare all face models for the facial recognition task.

    Parameters:
    - model_path: Path to the directory containing model files.
    - device: The device (e.g., 'cuda', 'cpu') where models will be loaded.
    - dtype: Data type (e.g., torch.float32) for model inference.

    Returns:
    - face_helper_1: First face restoration helper.
    - face_helper_2: Second face restoration helper.
    - face_clip_model: CLIP model for face extraction.
    - eva_transform_mean: Mean value for image normalization.
    - eva_transform_std: Standard deviation value for image normalization.
    - face_main_model: Main face analysis model.
    """
    # get helper model
    face_helper_1 = FaceRestoreHelper(
        upscale_factor=1,
        face_size=512,
        crop_ratio=(1, 1),
        det_model="retinaface_resnet50",
        save_ext="png",
        device=device,
        model_rootpath=os.path.join(model_path, "face_encoder"),
    )
    face_helper_1.face_parse = None
    face_helper_1.face_parse = init_parsing_model(
        model_name="bisenet", device=device, model_rootpath=os.path.join(model_path, "face_encoder")
    )
    face_helper_2 = insightface.model_zoo.get_model(
        f"{model_path}/face_encoder/models/antelopev2/glintr100.onnx", providers=["CUDAExecutionProvider"]
    )
    face_helper_2.prepare(ctx_id=0)

    # get local facial extractor part 1
    model, _, _ = create_model_and_transforms(
        "EVA02-CLIP-L-14-336",
        os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"),
        force_custom_clip=True,
    )
    face_clip_model = model.visual
    eva_transform_mean = getattr(face_clip_model, "image_mean", OPENAI_DATASET_MEAN)
    eva_transform_std = getattr(face_clip_model, "image_std", OPENAI_DATASET_STD)
    if not isinstance(eva_transform_mean, (list, tuple)):
        eva_transform_mean = (eva_transform_mean,) * 3
    if not isinstance(eva_transform_std, (list, tuple)):
        eva_transform_std = (eva_transform_std,) * 3
    eva_transform_mean = eva_transform_mean
    eva_transform_std = eva_transform_std

    # get local facial extractor part 2
    face_main_model = FaceAnalysis(
        name="antelopev2", root=os.path.join(model_path, "face_encoder"), providers=["CUDAExecutionProvider"]
    )
    face_main_model.prepare(ctx_id=0, det_size=(640, 640))

    # move face models to device
    face_helper_1.face_det.eval()
    face_helper_1.face_parse.eval()
    face_clip_model.eval()
    face_helper_1.face_det.to(device)
    face_helper_1.face_parse.to(device)
    face_clip_model.to(device, dtype=dtype)

    return face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std



###### train ###
def _get_t5_prompt_embeds(
    tokenizer: T5Tokenizer,
    text_encoder: T5EncoderModel,
    prompt: Union[str, List[str]],
    num_videos_per_prompt: int = 1,
    max_sequence_length: int = 226,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    text_input_ids=None,
):
    """
    Generate prompt embeddings using the T5 model for a given prompt or list of prompts.

    Args:
        tokenizer (T5Tokenizer): Tokenizer used to encode the text prompt(s).
        text_encoder (T5EncoderModel): Pretrained T5 encoder model to generate embeddings.
        prompt (Union[str, List[str]]): Single prompt or list of prompts to encode.
        num_videos_per_prompt (int, optional): Number of video embeddings to generate per prompt. Defaults to 1.
        max_sequence_length (int, optional): Maximum length for the tokenized prompt. Defaults to 226.
        device (Optional[torch.device], optional): The device on which to run the model (e.g., "cuda", "cpu").
        dtype (Optional[torch.dtype], optional): The data type for the embeddings (e.g., torch.float32).
        text_input_ids (optional): Pre-tokenized input IDs. If not provided, tokenizer is used to encode the prompt.

    Returns:
        torch.Tensor: The generated prompt embeddings reshaped for the specified number of video generations per prompt.
    """

    prompt = [prompt] if isinstance(prompt, str) else prompt
    batch_size = len(prompt)

    if tokenizer is not None:
        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
    else:
        if text_input_ids is None:
            raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.")

    prompt_embeds = text_encoder(text_input_ids.to(device))[0]
    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

    # duplicate text embeddings for each generation per prompt, using mps friendly method
    _, seq_len, _ = prompt_embeds.shape
    prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)

    return prompt_embeds


def encode_prompt(
    tokenizer: T5Tokenizer,
    text_encoder: T5EncoderModel,
    prompt: Union[str, List[str]],
    num_videos_per_prompt: int = 1,
    max_sequence_length: int = 226,
    device: Optional[torch.device] = None,
    dtype: Optional[torch.dtype] = None,
    text_input_ids=None,
):
    """
    Encode the given prompt(s) into embeddings using the T5 model.

    This function wraps the _get_t5_prompt_embeds function to generate prompt embeddings
    for a given prompt or list of prompts. It allows for generating multiple embeddings
    per prompt, useful for tasks like video generation.

    Args:
        tokenizer (T5Tokenizer): Tokenizer used to encode the text prompt(s).
        text_encoder (T5EncoderModel): Pretrained T5 encoder model to generate embeddings.
        prompt (Union[str, List[str]]): Single prompt or list of prompts to encode.
        num_videos_per_prompt (int, optional): Number of video embeddings to generate per prompt. Defaults to 1.
        max_sequence_length (int, optional): Maximum length for the tokenized prompt. Defaults to 226.
        device (Optional[torch.device], optional): The device on which to run the model (e.g., "cuda", "cpu").
        dtype (Optional[torch.dtype], optional): The data type for the embeddings (e.g., torch.float32).
        text_input_ids (optional): Pre-tokenized input IDs. If not provided, tokenizer is used to encode the prompt.

    Returns:
        torch.Tensor: The generated prompt embeddings reshaped for the specified number of video generations per prompt.
    """

    prompt = [prompt] if isinstance(prompt, str) else prompt
    prompt_embeds = _get_t5_prompt_embeds(
        tokenizer,
        text_encoder,
        prompt=prompt,
        num_videos_per_prompt=num_videos_per_prompt,
        max_sequence_length=max_sequence_length,
        device=device,
        dtype=dtype,
        text_input_ids=text_input_ids,
    )
    return prompt_embeds


def compute_prompt_embeddings(
    tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False
):
    """
    Compute the prompt embeddings based on whether gradient computation is required.

    This function generates embeddings for a given prompt or list of prompts, either
    with or without gradient tracking, depending on the `requires_grad` argument. It
    uses the `encode_prompt` function to generate embeddings for the provided prompt(s).

    Args:
        tokenizer (T5Tokenizer): Tokenizer used to encode the text prompt(s).
        text_encoder (T5EncoderModel): Pretrained T5 encoder model to generate embeddings.
        prompt (Union[str, List[str]]): Single prompt or list of prompts to encode.
        max_sequence_length (int): Maximum length for the tokenized prompt.
        device (torch.device): The device on which to run the model (e.g., "cuda", "cpu").
        dtype (torch.dtype): The data type for the embeddings (e.g., torch.float32).
        requires_grad (bool, optional): Whether the embeddings should require gradient computation. Defaults to False.

    Returns:
        torch.Tensor: The generated prompt embeddings.
    """

    if requires_grad:
        prompt_embeds = encode_prompt(
            tokenizer,
            text_encoder,
            prompt,
            num_videos_per_prompt=1,
            max_sequence_length=max_sequence_length,
            device=device,
            dtype=dtype,
        )
    else:
        with torch.no_grad():
            prompt_embeds = encode_prompt(
                tokenizer,
                text_encoder,
                prompt,
                num_videos_per_prompt=1,
                max_sequence_length=max_sequence_length,
                device=device,
                dtype=dtype,
            )
    return prompt_embeds


def prepare_rotary_positional_embeddings(
    height: int,
    width: int,
    num_frames: int,
    vae_scale_factor_spatial: int = 8,
    patch_size: int = 2,
    attention_head_dim: int = 64,
    device: Optional[torch.device] = None,
    base_height: int = 480,
    base_width: int = 720,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Prepare rotary positional embeddings for a given input grid size and number of frames.

    This function computes the rotary positional embeddings for both spatial and temporal dimensions
    given the grid size (height, width) and the number of frames. It also takes into account the scaling
    factors for the spatial resolution, as well as the patch size for the input.

    Args:
        height (int): Height of the input grid.
        width (int): Width of the input grid.
        num_frames (int): Number of frames in the temporal dimension.
        vae_scale_factor_spatial (int, optional): Scaling factor for the spatial resolution. Defaults to 8.
        patch_size (int, optional): The patch size used for the grid. Defaults to 2.
        attention_head_dim (int, optional): The dimensionality of the attention head. Defaults to 64.
        device (Optional[torch.device], optional): The device to which the tensors should be moved (e.g., "cuda", "cpu").
        base_height (int, optional): Base height for the image, typically the full resolution height. Defaults to 480.
        base_width (int, optional): Base width for the image, typically the full resolution width. Defaults to 720.

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Cosine and sine components of the rotary positional embeddings.
    """
    grid_height = height // (vae_scale_factor_spatial * patch_size)
    grid_width = width // (vae_scale_factor_spatial * patch_size)
    base_size_width = base_width // (vae_scale_factor_spatial * patch_size)
    base_size_height = base_height // (vae_scale_factor_spatial * patch_size)

    grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height)
    freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
        embed_dim=attention_head_dim,
        crops_coords=grid_crops_coords,
        grid_size=(grid_height, grid_width),
        temporal_size=num_frames,
    )

    freqs_cos = freqs_cos.to(device=device)
    freqs_sin = freqs_sin.to(device=device)
    return freqs_cos, freqs_sin


def tensor_to_pil(src_img_tensor):
    """
    Converts a tensor image to a PIL image.

    This function takes an input tensor with the shape (C, H, W) and converts it
    into a PIL Image format. It ensures that the tensor is in the correct data
    type and moves it to CPU if necessary.

    Parameters:
        src_img_tensor (torch.Tensor): Input image tensor with shape (C, H, W),
            where C is the number of channels, H is the height, and W is the width.

    Returns:
        PIL.Image: The converted image in PIL format.
    """

    img = src_img_tensor.clone().detach()
    if img.dtype == torch.bfloat16:
        img = img.to(torch.float32)
    img = img.cpu().numpy()
    img = np.transpose(img, (1, 2, 0))
    img = img.astype(np.uint8)
    pil_image = Image.fromarray(img)
    return pil_image