Benjamin Bossan commited on
Commit
675701e
1 Parent(s): 2e1d656

Users can test their own classifiers

Browse files
Files changed (1) hide show
  1. index.html +40 -3
index.html CHANGED
@@ -2,12 +2,49 @@
2
  <html lang="en">
3
  <head>
4
  <meta charset="utf-8" />
 
5
  <link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css" />
6
  <script defer src="https://pyscript.net/alpha/pyscript.js"></script>
7
- <title>PyScript Test</title>
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  </head>
9
  <body>
10
- <py-script> print('Hello!\nPress Shift+Enter to execute code') </py-script>
11
- <py-repl auto-generate="true"></py-repl>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  </body>
13
  </html>
 
2
  <html lang="en">
3
  <head>
4
  <meta charset="utf-8" />
5
+ <title>PyScript Test</title>
6
  <link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css" />
7
  <script defer src="https://pyscript.net/alpha/pyscript.js"></script>
8
+ <py-env>
9
+ - scikit-learn
10
+ - tabulate
11
+ </py-env>
12
+
13
+ <!-- from https://stackoverflow.com/a/62032824 -->
14
+ <link rel="stylesheet"
15
+ href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.6.0/styles/default.min.css">
16
+ <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.6.0/highlight.min.js"
17
+ integrity="sha512-gU7kztaQEl7SHJyraPfZLQCNnrKdaQi5ndOyt4L4UPL/FHDd/uB9Je6KDARIqwnNNE27hnqoWLBq+Kpe4iHfeQ=="
18
+ crossorigin="anonymous"
19
+ referrerpolicy="no-referrer"></script>
20
+ <script>hljs.initHighlightingOnLoad();</script>
21
+
22
  </head>
23
  <body>
24
+ <p>Define your own sklearn classifier and evaluate it on the toy dataset. An example is shown below:</p>
25
+ <pre>
26
+ <code class="python">from sklearn.linear_model import LogisticRegression
27
+ clf = LogisticRegression(random_state=0)
28
+ evaluate(clf)</code>
29
+ </pre>
30
+ Try to achieve a test accuracy of 0.85 or better! Get some inspiration for possible classifiers <a href="https://scikit-learn.org/stable/supervised_learning.html" title="List of sklearn estimators">here</a>.
31
+ <br><br>
32
+ Enter your code below, then press Shift+Enter:
33
+ <py-script>
34
+ from statistics import mean
35
+ from sklearn.datasets import make_classification
36
+ from sklearn.model_selection import cross_validate
37
+ import tabulate
38
+
39
+ X, y = make_classification(n_samples=1000, n_informative=10, random_state=0)
40
+
41
+ def evaluate(clf):
42
+ cv_result = cross_validate(clf, X, y, scoring='accuracy', cv=5)
43
+ show_result = {'split': [1, 2, 3, 4, 5], 'accuracy': cv_result['test_score']}
44
+ print(f"Mean test accuracy: {mean(cv_result['test_score']):.3f}")
45
+ return tabulate.tabulate(show_result, tablefmt='html', headers='keys', floatfmt='.3')
46
+ </py-script>
47
+
48
+ <py-repl auto-generate="false"></py-repl>
49
  </body>
50
  </html>