Spaces:
Running
Running
Benjamin Bossan
commited on
Commit
•
675701e
1
Parent(s):
2e1d656
Users can test their own classifiers
Browse files- index.html +40 -3
index.html
CHANGED
@@ -2,12 +2,49 @@
|
|
2 |
<html lang="en">
|
3 |
<head>
|
4 |
<meta charset="utf-8" />
|
|
|
5 |
<link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css" />
|
6 |
<script defer src="https://pyscript.net/alpha/pyscript.js"></script>
|
7 |
-
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
</head>
|
9 |
<body>
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
</body>
|
13 |
</html>
|
|
|
2 |
<html lang="en">
|
3 |
<head>
|
4 |
<meta charset="utf-8" />
|
5 |
+
<title>PyScript Test</title>
|
6 |
<link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css" />
|
7 |
<script defer src="https://pyscript.net/alpha/pyscript.js"></script>
|
8 |
+
<py-env>
|
9 |
+
- scikit-learn
|
10 |
+
- tabulate
|
11 |
+
</py-env>
|
12 |
+
|
13 |
+
<!-- from https://stackoverflow.com/a/62032824 -->
|
14 |
+
<link rel="stylesheet"
|
15 |
+
href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.6.0/styles/default.min.css">
|
16 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.6.0/highlight.min.js"
|
17 |
+
integrity="sha512-gU7kztaQEl7SHJyraPfZLQCNnrKdaQi5ndOyt4L4UPL/FHDd/uB9Je6KDARIqwnNNE27hnqoWLBq+Kpe4iHfeQ=="
|
18 |
+
crossorigin="anonymous"
|
19 |
+
referrerpolicy="no-referrer"></script>
|
20 |
+
<script>hljs.initHighlightingOnLoad();</script>
|
21 |
+
|
22 |
</head>
|
23 |
<body>
|
24 |
+
<p>Define your own sklearn classifier and evaluate it on the toy dataset. An example is shown below:</p>
|
25 |
+
<pre>
|
26 |
+
<code class="python">from sklearn.linear_model import LogisticRegression
|
27 |
+
clf = LogisticRegression(random_state=0)
|
28 |
+
evaluate(clf)</code>
|
29 |
+
</pre>
|
30 |
+
Try to achieve a test accuracy of 0.85 or better! Get some inspiration for possible classifiers <a href="https://scikit-learn.org/stable/supervised_learning.html" title="List of sklearn estimators">here</a>.
|
31 |
+
<br><br>
|
32 |
+
Enter your code below, then press Shift+Enter:
|
33 |
+
<py-script>
|
34 |
+
from statistics import mean
|
35 |
+
from sklearn.datasets import make_classification
|
36 |
+
from sklearn.model_selection import cross_validate
|
37 |
+
import tabulate
|
38 |
+
|
39 |
+
X, y = make_classification(n_samples=1000, n_informative=10, random_state=0)
|
40 |
+
|
41 |
+
def evaluate(clf):
|
42 |
+
cv_result = cross_validate(clf, X, y, scoring='accuracy', cv=5)
|
43 |
+
show_result = {'split': [1, 2, 3, 4, 5], 'accuracy': cv_result['test_score']}
|
44 |
+
print(f"Mean test accuracy: {mean(cv_result['test_score']):.3f}")
|
45 |
+
return tabulate.tabulate(show_result, tablefmt='html', headers='keys', floatfmt='.3')
|
46 |
+
</py-script>
|
47 |
+
|
48 |
+
<py-repl auto-generate="false"></py-repl>
|
49 |
</body>
|
50 |
</html>
|