Speech2Braille / app.py
Azuremis's picture
Add informative description to gradio demo
787265e
raw
history blame
2.31 kB
import gradio as gr
import whisper
from pybraille import convertText
# Translate speech to braille
def speech_to_text(audio):
"""
:param audio: Speech data
:return: Transcript of speech data
"""
model = whisper.load_model('base')
return model.transcribe(audio)
def transcribe_audio(audio, store=None):
"""
:param audio: Speech data from gradio interface
:param store: Container for user data
:return: Detected language, transcript text, braille translation, session state
"""
if store is None:
store = {}
result = speech_to_text(audio)
store['transcription'] = result['text']
store['braille'] = convertText(store['transcription'])
return f"Detected language: {result['language']}", store[
'transcription'], store['braille'], store
# Setup gradio interface
title = "Speech to Braille Translator"
description = 'This is a Speech to Braille translation demo. The speech-text translation uses the OpenAI ' \
'[Whisper](https://openai.com/blog/whisper/) [model](https://github.com/openai/whisper) whilst the text-braille' \
'component utilises the [PyBraille](https://pypi.org/project/pybraille/) library. You can find the project on ' \
'[Github](https://github.com/Azuremis/speech_to_braille_translator). Made by [Azuremis](https://azuremis.bio.link).'
transcription_tb = gr.Textbox(label="Transcription", lines=10, max_lines=20)
detected_lang = gr.outputs.HTML(label="Detected Language")
transcription_braille = gr.Textbox(label="Braille", lines=10, max_lines=20)
state = gr.State({"transcription": ""})
demo = gr.Interface(fn=transcribe_audio,
inputs=[
gr.Audio(source="microphone", type="filepath",
streaming=False),
state
],
outputs=[
detected_lang,
transcription_tb,
transcription_braille,
state,
],
# live=True,
allow_flagging='never',
title=title,
description=description,
)
# Launch gradio app
demo.launch()