from peft import PeftModel, PeftConfig import torch from datasets import load_dataset torch.cuda.is_available() print("executed successfully") dataset_name = "timdettmers/openassistant-guanaco" dataset = load_dataset(dataset_name, split="train") import os ld_library_path = os.environ.get("LD_LIBRARY_PATH") print(ld_library_path) # The directory to search in search_directory = '/usr/' # The filename pattern to look for (wildcard * is used) filename_pattern = 'libcuda.so.*' # Initialize a list to store the paths of matching files matching_files = [] # Walk through the directory and its subdirectories for root, dirs, files in os.walk(search_directory): for file in files: if file.startswith('libcuda.so.'): matching_files.append(os.path.join(root, file)) # Print the paths of matching files for file in matching_files: print(file)