import json import subprocess from threading import Thread import torch import spaces import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer subprocess.run('pip install --upgrade flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) MODEL_ID = "AtAndDev/marco-qwq-7B" CHAT_TEMPLATE = "ChatML" MODEL_NAME = MODEL_ID.split("/")[-1] CONTEXT_LENGTH = 48000 COLOR = "blue" EMOJI = "🤖" DESCRIPTION = """Finetuned Marco-O1 on ~60k QwQ responses to get this model. It can mimic "system-2" thinking in a small form factor. More r&d coming soon!""" latex_delimiters_set = [{ "left": "\\(", "right": "\\)", "display": False }, { "left": "\\begin{equation}", "right": "\\end{equation}", "display": True }, { "left": "\\begin{align}", "right": "\\end{align}", "display": True }, { "left": "\\begin{alignat}", "right": "\\end{alignat}", "display": True }, { "left": "\\begin{gather}", "right": "\\end{gather}", "display": True }, { "left": "\\begin{CD}", "right": "\\end{CD}", "display": True }, { "left": "\\[", "right": "\\]", "display": True }] @spaces.GPU() def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): # Format history with a given chat template if CHAT_TEMPLATE == "Auto": stop_tokens = [tokenizer.eos_token_id] instruction = system_prompt + "\n\n" for user, assistant in history: instruction += f"User: {user}\nAssistant: {assistant}\n" instruction += f"User: {message}\nAssistant:" elif CHAT_TEMPLATE == "ChatML": stop_tokens = ["<|endoftext|>", "<|im_end|>"] instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' for user, assistant in history: instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' elif CHAT_TEMPLATE == "Mistral Instruct": stop_tokens = ["", "[INST]", "[INST] ", "", "[/INST]", "[/INST] "] instruction = f'[INST] {system_prompt}\n' for user, assistant in history: instruction += f'{user} [/INST] {assistant}[INST]' instruction += f' {message} [/INST]' else: raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'") print(instruction) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) input_ids, attention_mask = enc.input_ids, enc.attention_mask if input_ids.shape[1] > CONTEXT_LENGTH: input_ids = input_ids[:, -CONTEXT_LENGTH:] attention_mask = attention_mask[:, -CONTEXT_LENGTH:] generate_kwargs = dict( input_ids=input_ids.to(device), attention_mask=attention_mask.to(device), streamer=streamer, do_sample=True, temperature=temperature, max_new_tokens=max_new_tokens, top_k=top_k, repetition_penalty=repetition_penalty, top_p=top_p ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for new_token in streamer: outputs.append(new_token) if new_token in stop_tokens: break yield "".join(outputs) # Load model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained("AIDC-AI/Marco-o1", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", quantization_config=quantization_config, attn_implementation="flash_attention_2", ) # Create Gradio interface gr.ChatInterface( predict, title=EMOJI + " " + MODEL_NAME, description=DESCRIPTION, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False), additional_inputs=[ gr.Textbox("You are a helpful assistant.", label="System prompt"), gr.Slider(0, 1, .2, label="Temperature"), gr.Slider(128, 32000, 32000, label="Max new tokens"), gr.Slider(1, 80, 40, label="Top K sampling"), gr.Slider(0, 2, 1.2, label="Repetition penalty"), gr.Slider(0, 1, .9, label="Top P sampling"), ], theme=gr.themes.Soft(primary_hue=COLOR), ).queue().launch()