Spaces:
Runtime error
Runtime error
Amirmarshal
commited on
Commit
β’
9e292f0
1
Parent(s):
cb84380
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
2 |
+
# using Gradio Blocks.
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import threading
|
6 |
+
import time
|
7 |
+
import uuid
|
8 |
+
from concurrent.futures import ThreadPoolExecutor
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import List
|
11 |
+
from urllib.parse import parse_qs
|
12 |
+
|
13 |
+
import gradio as gr
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
from huggingface_hub import Repository
|
16 |
+
from langchain import ConversationChain
|
17 |
+
from langchain.chains.conversation.memory import ConversationBufferMemory
|
18 |
+
from langchain.llms import HuggingFaceHub
|
19 |
+
from langchain.prompts import load_prompt
|
20 |
+
|
21 |
+
from utils import force_git_push
|
22 |
+
|
23 |
+
|
24 |
+
def generate_respone(chatbot: ConversationChain, input: str) -> str:
|
25 |
+
"""Generates a response for a `langchain` chatbot."""
|
26 |
+
return chatbot.predict(input=input)
|
27 |
+
|
28 |
+
|
29 |
+
def generate_responses(chatbots: List[ConversationChain], inputs: List[str]) -> List[str]:
|
30 |
+
"""Generates parallel responses for a list of `langchain` chatbots."""
|
31 |
+
results = []
|
32 |
+
with ThreadPoolExecutor(max_workers=100) as executor:
|
33 |
+
for result in executor.map(generate_respone, chatbots, inputs):
|
34 |
+
results.append(result)
|
35 |
+
return results
|
36 |
+
|
37 |
+
|
38 |
+
# These variables are for storing the MTurk HITs in a Hugging Face dataset.
|
39 |
+
if Path(".env").is_file():
|
40 |
+
load_dotenv(".env")
|
41 |
+
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
|
42 |
+
FORCE_PUSH = os.getenv("FORCE_PUSH")
|
43 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
44 |
+
PROMPT_TEMPLATES = Path("prompt_templates")
|
45 |
+
|
46 |
+
DATA_FILENAME = "data.jsonl"
|
47 |
+
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
48 |
+
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN)
|
49 |
+
|
50 |
+
TOTAL_CNT = 3 # How many user inputs per HIT
|
51 |
+
|
52 |
+
# This function pushes the HIT data written in data.jsonl to our Hugging Face
|
53 |
+
# dataset every minute. Adjust the frequency to suit your needs.
|
54 |
+
PUSH_FREQUENCY = 60
|
55 |
+
|
56 |
+
|
57 |
+
def asynchronous_push(f_stop):
|
58 |
+
if repo.is_repo_clean():
|
59 |
+
print("Repo currently clean. Ignoring push_to_hub")
|
60 |
+
else:
|
61 |
+
repo.git_add(auto_lfs_track=True)
|
62 |
+
repo.git_commit("Auto commit by space")
|
63 |
+
if FORCE_PUSH == "yes":
|
64 |
+
force_git_push(repo)
|
65 |
+
else:
|
66 |
+
repo.git_push()
|
67 |
+
if not f_stop.is_set():
|
68 |
+
# call again in 60 seconds
|
69 |
+
threading.Timer(PUSH_FREQUENCY, asynchronous_push, [f_stop]).start()
|
70 |
+
|
71 |
+
|
72 |
+
f_stop = threading.Event()
|
73 |
+
asynchronous_push(f_stop)
|
74 |
+
|
75 |
+
# Now let's run the app!
|
76 |
+
prompt = load_prompt(PROMPT_TEMPLATES / "openai_chatgpt.json")
|
77 |
+
|
78 |
+
# TODO: update this list with better, instruction-trained models
|
79 |
+
MODEL_IDS = ["google/flan-t5-xl", "bigscience/T0_3B", "EleutherAI/gpt-j-6B"]
|
80 |
+
chatbots = []
|
81 |
+
|
82 |
+
for model_id in MODEL_IDS:
|
83 |
+
chatbots.append(
|
84 |
+
ConversationChain(
|
85 |
+
llm=HuggingFaceHub(
|
86 |
+
repo_id=model_id,
|
87 |
+
model_kwargs={"temperature": 1},
|
88 |
+
huggingfacehub_api_token=HF_TOKEN,
|
89 |
+
),
|
90 |
+
prompt=prompt,
|
91 |
+
verbose=False,
|
92 |
+
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
93 |
+
)
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
model_id2model = {chatbot.llm.repo_id: chatbot for chatbot in chatbots}
|
98 |
+
|
99 |
+
demo = gr.Blocks()
|
100 |
+
|
101 |
+
with demo:
|
102 |
+
dummy = gr.Textbox(visible=False) # dummy for passing assignmentId
|
103 |
+
|
104 |
+
# We keep track of state as a JSON
|
105 |
+
state_dict = {
|
106 |
+
"conversation_id": str(uuid.uuid4()),
|
107 |
+
"assignmentId": "",
|
108 |
+
"cnt": 0,
|
109 |
+
"data": [],
|
110 |
+
"past_user_inputs": [],
|
111 |
+
"generated_responses": [],
|
112 |
+
}
|
113 |
+
for idx in range(len(chatbots)):
|
114 |
+
state_dict[f"response_{idx+1}"] = ""
|
115 |
+
state = gr.JSON(state_dict, visible=False)
|
116 |
+
|
117 |
+
gr.Markdown("# Talk to the assistant")
|
118 |
+
|
119 |
+
state_display = gr.Markdown(f"Your messages: 0/{TOTAL_CNT}")
|
120 |
+
|
121 |
+
# Generate model prediction
|
122 |
+
def _predict(txt, state):
|
123 |
+
start = time.time()
|
124 |
+
responses = generate_responses(chatbots, [txt] * len(chatbots))
|
125 |
+
print(f"Time taken to generate {len(chatbots)} responses : {time.time() - start:.2f} seconds")
|
126 |
+
|
127 |
+
response2model_id = {}
|
128 |
+
for chatbot, response in zip(chatbots, responses):
|
129 |
+
response2model_id[response] = chatbot.llm.repo_id
|
130 |
+
|
131 |
+
state["cnt"] += 1
|
132 |
+
|
133 |
+
new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}"
|
134 |
+
|
135 |
+
metadata = {"cnt": state["cnt"], "text": txt}
|
136 |
+
for idx, response in enumerate(responses):
|
137 |
+
metadata[f"response_{idx + 1}"] = response
|
138 |
+
|
139 |
+
metadata["response2model_id"] = response2model_id
|
140 |
+
|
141 |
+
state["data"].append(metadata)
|
142 |
+
state["past_user_inputs"].append(txt)
|
143 |
+
|
144 |
+
past_conversation_string = "<br />".join(
|
145 |
+
[
|
146 |
+
"<br />".join(["Human π: " + user_input, "Assistant π€: " + model_response])
|
147 |
+
for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])
|
148 |
+
]
|
149 |
+
)
|
150 |
+
return (
|
151 |
+
gr.update(visible=False),
|
152 |
+
gr.update(visible=True),
|
153 |
+
gr.update(visible=True, choices=responses, interactive=True, value=responses[0]),
|
154 |
+
gr.update(value=past_conversation_string),
|
155 |
+
state,
|
156 |
+
gr.update(visible=False),
|
157 |
+
gr.update(visible=False),
|
158 |
+
gr.update(visible=False),
|
159 |
+
new_state_md,
|
160 |
+
dummy,
|
161 |
+
)
|
162 |
+
|
163 |
+
def _select_response(selected_response, state, dummy):
|
164 |
+
done = state["cnt"] == TOTAL_CNT
|
165 |
+
state["generated_responses"].append(selected_response)
|
166 |
+
state["data"][-1]["selected_response"] = selected_response
|
167 |
+
state["data"][-1]["selected_model"] = state["data"][-1]["response2model_id"][selected_response]
|
168 |
+
if state["cnt"] == TOTAL_CNT:
|
169 |
+
# Write the HIT data to our local dataset because the worker has
|
170 |
+
# submitted everything now.
|
171 |
+
with open(DATA_FILE, "a") as jsonlfile:
|
172 |
+
json_data_with_assignment_id = [
|
173 |
+
json.dumps(
|
174 |
+
dict(
|
175 |
+
{"assignmentId": state["assignmentId"], "conversation_id": state["conversation_id"]},
|
176 |
+
**datum,
|
177 |
+
)
|
178 |
+
)
|
179 |
+
for datum in state["data"]
|
180 |
+
]
|
181 |
+
jsonlfile.write("\n".join(json_data_with_assignment_id) + "\n")
|
182 |
+
toggle_example_submit = gr.update(visible=not done)
|
183 |
+
past_conversation_string = "<br />".join(
|
184 |
+
[
|
185 |
+
"<br />".join(["π: " + user_input, "π€: " + model_response])
|
186 |
+
for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"])
|
187 |
+
]
|
188 |
+
)
|
189 |
+
query = parse_qs(dummy[1:])
|
190 |
+
if "assignmentId" in query and query["assignmentId"][0] != "ASSIGNMENT_ID_NOT_AVAILABLE":
|
191 |
+
# It seems that someone is using this app on mturk. We need to
|
192 |
+
# store the assignmentId in the state before submit_hit_button
|
193 |
+
# is clicked. We can do this here in _predict. We need to save the
|
194 |
+
# assignmentId so that the turker can get credit for their HIT.
|
195 |
+
state["assignmentId"] = query["assignmentId"][0]
|
196 |
+
toggle_final_submit = gr.update(visible=done)
|
197 |
+
toggle_final_submit_preview = gr.update(visible=False)
|
198 |
+
else:
|
199 |
+
toggle_final_submit_preview = gr.update(visible=done)
|
200 |
+
toggle_final_submit = gr.update(visible=False)
|
201 |
+
|
202 |
+
if done:
|
203 |
+
# Wipe the memory completely because we will be starting a new hit soon.
|
204 |
+
for chatbot in chatbots:
|
205 |
+
chatbot.memory = ConversationBufferMemory(ai_prefix="Assistant")
|
206 |
+
else:
|
207 |
+
# Sync all of the model's memories with the conversation path that
|
208 |
+
# was actually taken.
|
209 |
+
for chatbot in chatbots:
|
210 |
+
chatbot.memory = model_id2model[state["data"][-1]["response2model_id"][selected_response]].memory
|
211 |
+
|
212 |
+
text_input = gr.update(visible=False) if done else gr.update(visible=True)
|
213 |
+
return (
|
214 |
+
gr.update(visible=False),
|
215 |
+
gr.update(visible=True),
|
216 |
+
text_input,
|
217 |
+
gr.update(visible=False),
|
218 |
+
state,
|
219 |
+
gr.update(value=past_conversation_string),
|
220 |
+
toggle_example_submit,
|
221 |
+
toggle_final_submit,
|
222 |
+
toggle_final_submit_preview,
|
223 |
+
dummy,
|
224 |
+
)
|
225 |
+
|
226 |
+
# Input fields
|
227 |
+
past_conversation = gr.Markdown()
|
228 |
+
text_input = gr.Textbox(placeholder="Enter a statement", show_label=False)
|
229 |
+
select_response = gr.Radio(
|
230 |
+
choices=[None, None], visible=False, label="Choose the most helpful and honest response"
|
231 |
+
)
|
232 |
+
select_response_button = gr.Button("Select Response", visible=False)
|
233 |
+
with gr.Column() as example_submit:
|
234 |
+
submit_ex_button = gr.Button("Submit")
|
235 |
+
with gr.Column(visible=False) as final_submit:
|
236 |
+
submit_hit_button = gr.Button("Submit HIT")
|
237 |
+
with gr.Column(visible=False) as final_submit_preview:
|
238 |
+
submit_hit_button_preview = gr.Button(
|
239 |
+
"Submit Work (preview mode; no MTurk HIT credit, but your examples will still be stored)"
|
240 |
+
)
|
241 |
+
|
242 |
+
# Button event handlers
|
243 |
+
get_window_location_search_js = """
|
244 |
+
function(select_response, state, dummy) {
|
245 |
+
return [select_response, state, window.location.search];
|
246 |
+
}
|
247 |
+
"""
|
248 |
+
|
249 |
+
select_response_button.click(
|
250 |
+
_select_response,
|
251 |
+
inputs=[select_response, state, dummy],
|
252 |
+
outputs=[
|
253 |
+
select_response,
|
254 |
+
example_submit,
|
255 |
+
text_input,
|
256 |
+
select_response_button,
|
257 |
+
state,
|
258 |
+
past_conversation,
|
259 |
+
example_submit,
|
260 |
+
final_submit,
|
261 |
+
final_submit_preview,
|
262 |
+
dummy,
|
263 |
+
],
|
264 |
+
_js=get_window_location_search_js,
|
265 |
+
)
|
266 |
+
|
267 |
+
submit_ex_button.click(
|
268 |
+
_predict,
|
269 |
+
inputs=[text_input, state],
|
270 |
+
outputs=[
|
271 |
+
text_input,
|
272 |
+
select_response_button,
|
273 |
+
select_response,
|
274 |
+
past_conversation,
|
275 |
+
state,
|
276 |
+
example_submit,
|
277 |
+
final_submit,
|
278 |
+
final_submit_preview,
|
279 |
+
state_display,
|
280 |
+
],
|
281 |
+
)
|
282 |
+
|
283 |
+
post_hit_js = """
|
284 |
+
function(state) {
|
285 |
+
// If there is an assignmentId, then the submitter is on mturk
|
286 |
+
// and has accepted the HIT. So, we need to submit their HIT.
|
287 |
+
const form = document.createElement('form');
|
288 |
+
form.action = 'https://workersandbox.mturk.com/mturk/externalSubmit';
|
289 |
+
form.method = 'post';
|
290 |
+
for (const key in state) {
|
291 |
+
const hiddenField = document.createElement('input');
|
292 |
+
hiddenField.type = 'hidden';
|
293 |
+
hiddenField.name = key;
|
294 |
+
hiddenField.value = state[key];
|
295 |
+
form.appendChild(hiddenField);
|
296 |
+
};
|
297 |
+
document.body.appendChild(form);
|
298 |
+
form.submit();
|
299 |
+
return state;
|
300 |
+
}
|
301 |
+
"""
|
302 |
+
|
303 |
+
submit_hit_button.click(
|
304 |
+
lambda state: state,
|
305 |
+
inputs=[state],
|
306 |
+
outputs=[state],
|
307 |
+
_js=post_hit_js,
|
308 |
+
)
|
309 |
+
|
310 |
+
refresh_app_js = """
|
311 |
+
function(state) {
|
312 |
+
// The following line here loads the app again so the user can
|
313 |
+
// enter in another preview-mode "HIT".
|
314 |
+
window.location.href = window.location.href;
|
315 |
+
return state;
|
316 |
+
}
|
317 |
+
"""
|
318 |
+
|
319 |
+
submit_hit_button_preview.click(
|
320 |
+
lambda state: state,
|
321 |
+
inputs=[state],
|
322 |
+
outputs=[state],
|
323 |
+
_js=refresh_app_js,
|
324 |
+
)
|
325 |
+
|
326 |
+
demo.launch()
|