Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from typing import List | |
from PIL import Image, ImageDraw | |
from transformers import OwlViTProcessor, OwlViTForObjectDetection | |
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32") | |
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32") | |
def pro_process(labelstring): | |
labels = labelstring.split(",") | |
labels = [i.strip() for i in labels] | |
return labels | |
def inference(img: Image.Image, labels: List[str]) -> Image.Image: | |
labels = pro_process(labels) | |
print(labels) | |
inputs = processor(text=labels, images=img, return_tensors="pt") | |
outputs = model(**inputs) | |
target_sizes = torch.Tensor([img.size[::-1]]) | |
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes, threshold=0.1) | |
i = 0 | |
boxes, scores, labels_index = results[i]["boxes"], results[i]["scores"], results[i]["labels"] | |
draw = ImageDraw.Draw(img) | |
for box, score, label_index in zip(boxes, scores, labels_index): | |
box = [round(i, 2) for i in box.tolist()] | |
xmin, ymin, xmax, ymax = box | |
draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1) | |
draw.text((xmin, ymin), f"{labels[label_index]}: {round(float(score),2)}", fill="white") | |
return img | |
with gr.Blocks(title="Zero-shot object detection", theme="freddyaboulton/dracula_revamped") as demo: | |
gr.Markdown("" | |
"## Zero-shot object detection" | |
"") | |
with gr.Row(): | |
with gr.Column(): | |
in_img = gr.Image(label="Input Image", type="pil") | |
in_labels = gr.Textbox(label="Input labels, comma apart") | |
inference_btn = gr.Button("Inference", variant="primary") | |
with gr.Column(): | |
out_img = gr.Image(label="Result", interactive=False) | |
inference_btn.click(inference, inputs=[in_img, in_labels], outputs=[out_img]) | |
if __name__ == "__main__": | |
demo.queue().launch() |