# import gradio as gr from diffusers import DiffusionPipeline import torch # Pipeline global vorinitialisieren für bessere Performance pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev") pipe.load_lora_weights("enhanceaiteam/Flux-uncensored") # GPU-Optimierung if torch.cuda.is_available(): pipe = pipe.to("cuda") pipe.enable_model_cpu_offload() # Zusätzliche Speicheroptimierung def generate_image( prompt, width=512, height=512, num_inference_steps=50, guidance_scale=7.5 ): try: image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale ).images[0] return image except Exception as e: print(f"Fehler bei Bildgenerierung: {e}") return None # Gradio-Interface mit erweiterten Optionen def create_gradio_interface(): with gr.Blocks() as demo: gr.Markdown("# Flux Bildgenerator") with gr.Row(): prompt = gr.Textbox(label="Bildprompt", lines=2) width = gr.Slider(minimum=64, maximum=2048, value=512, label="Breite") height = gr.Slider(minimum=64, maximum=2048, value=512, label="Höhe") with gr.Row(): steps = gr.Slider(minimum=10, maximum=100, value=50, label="Inference Steps") guidance = gr.Slider(minimum=1, maximum=15, value=7.5, label="Guidance Scale") generate_btn = gr.Button("Bild generieren", variant="primary") output_image = gr.Image(label="Generiertes Bild") generate_btn.click( fn=generate_image, inputs=[prompt, width, height, steps, guidance], outputs=output_image ) # Beispiel-Prompts gr.Examples( examples=[ ["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"], ["Cyberpunk city landscape at night"], ["Realistic portrait of a wolf in mountain terrain"] ], inputs=[prompt] ) return demo # Hauptausführung def main(): interface = create_gradio_interface() interface.launch( share=True, # Für öffentlichen Zugang debug=True # Detaillierte Fehlermeldungen ) if __name__ == "__main__": main()