Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,150 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def main():
|
4 |
-
# Laden des Flux-Modells
|
5 |
-
demo = gr.load("models/enhanceaiteam/Flux-Uncensored-V2")
|
6 |
-
|
7 |
-
# Anpassung der Benutzeroberfläche
|
8 |
-
with gr.Blocks() as flux_interface:
|
9 |
-
gr.Markdown("# Flux Image Generator 🖼️")
|
10 |
-
gr.Markdown("Generieren Sie hochwertige Bilder mit Flux AI")
|
11 |
-
|
12 |
with gr.Row():
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
)
|
28 |
|
29 |
if __name__ == "__main__":
|
30 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import os
|
5 |
+
|
6 |
+
import spaces
|
7 |
+
from diffusers import AutoPipelineForText2Image
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from huggingface_hub import login
|
11 |
+
login(os.environ.get("HF_TOKEN"))
|
12 |
+
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
torch_dtype = torch.float16
|
17 |
+
else:
|
18 |
+
torch_dtype = torch.float32
|
19 |
+
|
20 |
+
pipe = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
21 |
+
pipe.load_lora_weights('enhanceaiteam/Flux-uncensored', weight_name='lora.safetensors')
|
22 |
+
pipe = pipe.to(device)
|
23 |
+
|
24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
25 |
+
MAX_IMAGE_SIZE = 1024
|
26 |
+
|
27 |
+
|
28 |
+
@spaces.GPU
|
29 |
+
def infer(
|
30 |
+
prompt,
|
31 |
+
seed,
|
32 |
+
randomize_seed,
|
33 |
+
width,
|
34 |
+
height,
|
35 |
+
guidance_scale,
|
36 |
+
num_inference_steps,
|
37 |
+
progress=gr.Progress(track_tqdm=True),
|
38 |
+
):
|
39 |
+
if randomize_seed:
|
40 |
+
seed = random.randint(0, MAX_SEED)
|
41 |
+
|
42 |
+
generator = torch.Generator().manual_seed(seed)
|
43 |
+
|
44 |
+
image = pipe(
|
45 |
+
prompt=prompt,
|
46 |
+
guidance_scale=guidance_scale,
|
47 |
+
num_inference_steps=num_inference_steps,
|
48 |
+
width=width,
|
49 |
+
height=height,
|
50 |
+
generator=generator,
|
51 |
+
).images[0]
|
52 |
+
|
53 |
+
return image, seed
|
54 |
+
|
55 |
+
|
56 |
+
examples = [
|
57 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
58 |
+
"An astronaut riding a green horse",
|
59 |
+
"A delicious ceviche cheesecake slice",
|
60 |
+
]
|
61 |
+
|
62 |
+
css = """
|
63 |
+
#col-container {
|
64 |
+
margin: 0 auto;
|
65 |
+
max-width: 640px;
|
66 |
+
}
|
67 |
+
"""
|
68 |
+
|
69 |
+
with gr.Blocks(css=css) as demo:
|
70 |
+
with gr.Column(elem_id="col-container"):
|
71 |
+
gr.Markdown(f"""# [FLUX.1](https://blackforestlabs.ai/)
|
72 |
+
Generate any type of image.
|
73 |
+
""")
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
with gr.Row():
|
76 |
+
prompt = gr.Text(
|
77 |
+
label="Prompt",
|
78 |
+
show_label=False,
|
79 |
+
max_lines=1,
|
80 |
+
placeholder="Enter your prompt",
|
81 |
+
container=False,
|
82 |
+
)
|
83 |
+
|
84 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
85 |
+
|
86 |
+
result = gr.Image(label="Result", show_label=False)
|
87 |
+
|
88 |
+
with gr.Accordion("Advanced Settings", open=False):
|
89 |
+
seed = gr.Slider(
|
90 |
+
label="Seed",
|
91 |
+
minimum=0,
|
92 |
+
maximum=MAX_SEED,
|
93 |
+
step=1,
|
94 |
+
value=0,
|
95 |
+
)
|
96 |
+
|
97 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
width = gr.Slider(
|
101 |
+
label="Width",
|
102 |
+
minimum=256,
|
103 |
+
maximum=MAX_IMAGE_SIZE,
|
104 |
+
step=32,
|
105 |
+
value=1024,
|
106 |
+
)
|
107 |
+
|
108 |
+
height = gr.Slider(
|
109 |
+
label="Height",
|
110 |
+
minimum=256,
|
111 |
+
maximum=MAX_IMAGE_SIZE,
|
112 |
+
step=32,
|
113 |
+
value=1024,
|
114 |
+
)
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
guidance_scale = gr.Slider(
|
118 |
+
label="Guidance scale",
|
119 |
+
minimum=0.0,
|
120 |
+
maximum=10.0,
|
121 |
+
step=0.1,
|
122 |
+
value=3.5,
|
123 |
+
)
|
124 |
+
|
125 |
+
num_inference_steps = gr.Slider(
|
126 |
+
label="Number of inference steps",
|
127 |
+
minimum=1,
|
128 |
+
maximum=50,
|
129 |
+
step=1,
|
130 |
+
value=28,
|
131 |
+
)
|
132 |
+
|
133 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
134 |
+
gr.on(
|
135 |
+
triggers=[run_button.click, prompt.submit],
|
136 |
+
fn=infer,
|
137 |
+
inputs=[
|
138 |
+
prompt,
|
139 |
+
seed,
|
140 |
+
randomize_seed,
|
141 |
+
width,
|
142 |
+
height,
|
143 |
+
guidance_scale,
|
144 |
+
num_inference_steps,
|
145 |
+
],
|
146 |
+
outputs=[result, seed],
|
147 |
)
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
+
demo.launch()
|