Spaces:
Runtime error
Runtime error
import torch | |
from diffusers import FluxPipeline | |
import gradio as gr | |
def generate_flux_image( | |
prompt, | |
width=512, | |
height=512, | |
num_inference_steps=50, | |
guidance_scale=7.5, | |
seed=None | |
): | |
# Zufallsgenerator-Initialisierung | |
if seed is None: | |
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu") | |
else: | |
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed) | |
# Pipeline laden | |
pipeline = FluxPipeline.from_pretrained( | |
"improvements/flux", # Passen Sie den Pfad an | |
torch_dtype=torch.float16 | |
) | |
# Überprüfen und ggf. auf GPU verschieben | |
if torch.cuda.is_available(): | |
pipeline = pipeline.to("cuda") | |
# Bildgenerierung | |
image = pipeline( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator | |
).images[0] | |
return image | |
# Gradio-Interface | |
def create_gradio_interface(): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
prompt = gr.Textbox(label="Bildprompt") | |
width = gr.Slider(minimum=64, maximum=2048, value=512, label="Breite") | |
height = gr.Slider(minimum=64, maximum=2048, value=512, label="Höhe") | |
with gr.Row(): | |
steps = gr.Slider(minimum=10, maximum=100, value=50, label="Inference Steps") | |
guidance = gr.Slider(minimum=1, maximum=15, value=7.5, label="Guidance Scale") | |
seed = gr.Number(label="Seed (optional)", precision=0) | |
generate_btn = gr.Button("Bild generieren") | |
output_image = gr.Image(label="Generiertes Bild") | |
generate_btn.click( | |
fn=generate_flux_image, | |
inputs=[prompt, width, height, steps, guidance, seed], | |
outputs=output_image | |
) | |
return demo | |
# Interface starten | |
if __name__ == "__main__": | |
interface = create_gradio_interface() | |
interface.launch(share=True) |