import gradio as gr import edge_tts import asyncio import librosa import soundfile import io import argparse import numpy as np from inference.infer_tool import Svc def get_or_create_eventloop(): try: return asyncio.get_event_loop() except RuntimeError as ex: if "There is no current event loop in thread" in str(ex): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return asyncio.get_event_loop() def tts_get_voices_list(): voices = [] tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) for item in tts_voice_list: voices.append(item['ShortName']) return voices def infer(txt, tts_voice, input_audio, predict_f0, audio_mode): if audio_mode: if input_audio is None: return 'Please upload your audio file' sampling_rate, audio = input_audio duration = audio.shape[0] / sampling_rate if duration > 30: return 'The audio file is too long, Please upload audio file that less than 30 seconds' audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) raw_path = io.BytesIO() soundfile.write(raw_path, audio, 16000, format="wav") raw_path.seek(0) model = Svc(fr"Herta-Svc/G_10000.pth", f"Herta-Svc/config.json", device = 'cpu') out_audio, out_sr = model.infer('speaker0', 0, raw_path, auto_predict_f0 = predict_f0,) return (44100, out_audio.cpu().numpy()) tts = asyncio.run(edge_tts.Communicate(txt, tts_voice).save('audio.mp3')) audio, sr = librosa.load('audio.mp3', sr=16000, mono=True) raw_path = io.BytesIO() soundfile.write(raw_path, audio, 16000, format="wav") raw_path.seek(0) model = Svc(fr"Herta-Svc/G_10000.pth", f"Herta-Svc/config.json", device = 'cpu') out_audio, out_sr = model.infer('speaker0', 0, raw_path, auto_predict_f0 = True,) return (44100, out_audio.cpu().numpy()) def change_to_audio_mode(audio_mode): if audio_mode: return gr.Audio.update(visible = True), gr.Textbox.update(visible= False), gr.Dropdown.update(visible = False), gr.Checkbox.update(value = True) else: return gr.Audio.update(visible = False), gr.Textbox.update(visible= True), gr.Dropdown.update(visible = True), gr.Checkbox.update(value = False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--api', action="store_true", default=False) parser.add_argument("--share", action="store_true", default=False, help="share gradio app") args = parser.parse_args() loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) with gr.Blocks() as app: with gr.Tabs(): with gr.TabItem('Herta'): title = gr.Label('Herta Sovits Model') cover = gr.Markdown('
' f'' '
') tts_text = gr.Textbox(label="TTS text (100 words limitation)") audio_input = gr.Audio(label = 'Please upload audio file that less than 30 seconds', visible = False) tts_voice = gr.Dropdown(choices= tts_get_voices_list()) predict_f0 = gr.Checkbox(label = 'Auto predict F0', value = False) audio_mode = gr.Checkbox(label = 'Upload audio instead', value = False) audio_output = gr.Audio(label="Output Audio") btn_submit = gr.Button("Generate") btn_submit.click(infer, [tts_text, tts_voice, audio_input, predict_f0, audio_mode], [audio_output]) audio_mode.change(change_to_audio_mode, audio_mode, [audio_input, tts_text, tts_voice]) app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)