import io import os # os.system("wget -P cvec/ https://huggingface.co./spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt") import gradio as gr import gradio.processing_utils as gr_pu import librosa import numpy as np import soundfile from inference.infer_tool import Svc import logging import re import json import subprocess import edge_tts import asyncio from scipy.io import wavfile import librosa import torch import time import traceback from itertools import chain from utils import mix_model logging.getLogger('numba').setLevel(logging.WARNING) logging.getLogger('markdown_it').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) logging.getLogger('matplotlib').setLevel(logging.WARNING) logging.getLogger('multipart').setLevel(logging.WARNING) model = None spk = None debug = False cuda = {} if torch.cuda.is_available(): for i in range(torch.cuda.device_count()): device_name = torch.cuda.get_device_properties(i).name cuda[f"CUDA:{i} {device_name}"] = f"cuda:{i}" def upload_mix_append_file(files,sfiles): try: if(sfiles == None): file_paths = [file.name for file in files] else: file_paths = [file.name for file in chain(files,sfiles)] p = {file:100 for file in file_paths} return file_paths,mix_model_output1.update(value=json.dumps(p,indent=2)) except Exception as e: if debug: traceback.print_exc() raise gr.Error(e) def mix_submit_click(js,mode): try: assert js.lstrip()!="" modes = {"凸组合":0, "线性组合":1} mode = modes[mode] data = json.loads(js) data = list(data.items()) model_path,mix_rate = zip(*data) path = mix_model(model_path,mix_rate,mode) return f"成功,文件被保存在了{path}" except Exception as e: if debug: traceback.print_exc() raise gr.Error(e) def updata_mix_info(files): try: if files == None : return mix_model_output1.update(value="") p = {file.name:100 for file in files} return mix_model_output1.update(value=json.dumps(p,indent=2)) except Exception as e: if debug: traceback.print_exc() raise gr.Error(e) def modelAnalysis(model_path,config_path,cluster_model_path,device,enhance): global model try: device = cuda[device] if "CUDA" in device else device model = Svc(model_path.name, config_path.name, device=device if device!="Auto" else None, cluster_model_path = cluster_model_path.name if cluster_model_path != None else "",nsf_hifigan_enhance=enhance) spks = list(model.spk2id.keys()) device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev) msg = f"成功加载模型到设备{device_name}上\n" if cluster_model_path is None: msg += "未加载聚类模型\n" else: msg += f"聚类模型{cluster_model_path.name}加载成功\n" msg += "当前模型的可用音色:\n" for i in spks: msg += i + " " return sid.update(choices = spks,value=spks[0]), msg except Exception as e: if debug: traceback.print_exc() raise gr.Error(e) def modelUnload(): global model if model is None: return sid.update(choices = [],value=""),"没有模型需要卸载!" else: model.unload_model() model = None torch.cuda.empty_cache() return sid.update(choices = [],value=""),"模型卸载完毕!" def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling,enhancer_adaptive_key,cr_threshold): global model try: if input_audio is None: raise gr.Error("你需要上传音频") if model is None: raise gr.Error("你需要指定模型") sampling_rate, audio = input_audio # print(audio.shape,sampling_rate) audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) temp_path = "temp.wav" soundfile.write(temp_path, audio, sampling_rate, format="wav") _audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling,enhancer_adaptive_key,cr_threshold) model.clear_empty() os.remove(temp_path) #构建保存文件的路径,并保存到results文件夹内 try: timestamp = str(int(time.time())) filename = sid + "_" + timestamp + ".wav" output_file = os.path.join("./results", filename) soundfile.write(output_file, _audio, model.target_sample, format="wav") return f"推理成功,音频文件保存为results/{filename}", (model.target_sample, _audio) except Exception as e: if debug: traceback.print_exc() return f"文件保存失败,请手动保存", (model.target_sample, _audio) except Exception as e: if debug: traceback.print_exc() raise gr.Error(e) def tts_func(_text,_rate,_voice): #使用edge-tts把文字转成音频 # voice = "zh-CN-XiaoyiNeural"#女性,较高音 # voice = "zh-CN-YunxiNeural"#男性 voice = "zh-CN-YunxiNeural"#男性 if ( _voice == "女" ) : voice = "zh-CN-XiaoyiNeural" output_file = _text[0:10]+".wav" # communicate = edge_tts.Communicate(_text, voice) # await communicate.save(output_file) if _rate>=0: ratestr="+{:.0%}".format(_rate) elif _rate<0: ratestr="{:.0%}".format(_rate)#减号自带 p=subprocess.Popen("edge-tts "+ " --text "+_text+ " --write-media "+output_file+ " --voice "+voice+ " --rate="+ratestr ,shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE) p.wait() return output_file def text_clear(text): return re.sub(r"[\n\,\(\) ]", "", text) def vc_fn2(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,tts_voice,F0_mean_pooling,enhancer_adaptive_key,cr_threshold): #使用edge-tts把文字转成音频 text2tts=text_clear(text2tts) output_file=tts_func(text2tts,tts_rate,tts_voice) #调整采样率 sr2=44100 wav, sr = librosa.load(output_file) wav2 = librosa.resample(wav, orig_sr=sr, target_sr=sr2) save_path2= text2tts[0:10]+"_44k"+".wav" wavfile.write(save_path2,sr2, (wav2 * np.iinfo(np.int16).max).astype(np.int16) ) #读取音频 sample_rate, data=gr_pu.audio_from_file(save_path2) vc_input=(sample_rate, data) a,b=vc_fn(sid, vc_input, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling,enhancer_adaptive_key,cr_threshold) os.remove(output_file) os.remove(save_path2) return a,b def debug_change(): global debug debug = debug_button.value with gr.Blocks( theme=gr.themes.Base( primary_hue = gr.themes.colors.green, font=["Source Sans Pro", "Arial", "sans-serif"], font_mono=['JetBrains mono', "Consolas", 'Courier New'] ), ) as app: with gr.Tabs(): with gr.TabItem("推理"): gr.Markdown(value=""" So-vits-svc 4.0 推理 webui """) with gr.Row(variant="panel"): with gr.Column(): gr.Markdown(value=""" 模型设置 """) model_path = gr.File(label="选择模型文件") config_path = gr.File(label="选择配置文件") cluster_model_path = gr.File(label="选择聚类模型文件(没有可以不选)") device = gr.Dropdown(label="推理设备,默认为自动选择CPU和GPU", choices=["Auto",*cuda.keys(),"CPU"], value="Auto") enhance = gr.Checkbox(label="是否使用NSF_HIFIGAN增强,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭", value=False) with gr.Column(): gr.Markdown(value=""" 左侧文件全部选择完毕后(全部文件模块显示download),点击“加载模型”进行解析: """) model_load_button = gr.Button(value="加载模型", variant="primary") model_unload_button = gr.Button(value="卸载模型", variant="primary") sid = gr.Dropdown(label="音色(说话人)") sid_output = gr.Textbox(label="Output Message") with gr.Row(variant="panel"): with gr.Column(): gr.Markdown(value=""" 推理设置 """) auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声勾选此项会究极跑调)", value=False) F0_mean_pooling = gr.Checkbox(label="是否对F0使用均值滤波器(池化),对部分哑音有改善。注意,启动该选项会导致推理速度下降,默认关闭", value=False) vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0) cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,0即不启用聚类。使用聚类模型能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0) slice_db = gr.Number(label="切片阈值", value=-40) noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4) with gr.Column(): pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5) cl_num = gr.Number(label="音频自动切片,0为不切片,单位为秒(s)", value=0) lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0) lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75) enhancer_adaptive_key = gr.Number(label="使增强器适应更高的音域(单位为半音数)|默认为0", value=0) cr_threshold = gr.Number(label="F0过滤阈值,只有启动f0_mean_pooling时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音", value=0.05) with gr.Tabs(): with gr.TabItem("音频转音频"): vc_input3 = gr.Audio(label="选择音频") vc_submit = gr.Button("音频转换", variant="primary") with gr.TabItem("文字转音频"): text2tts=gr.Textbox(label="在此输入要转译的文字。注意,使用该功能建议打开F0预测,不然会很怪") tts_rate = gr.Number(label="tts语速", value=0) tts_voice = gr.Radio(label="性别",choices=["男","女"], value="男") vc_submit2 = gr.Button("文字转换", variant="primary") with gr.Row(): with gr.Column(): vc_output1 = gr.Textbox(label="Output Message") with gr.Column(): vc_output2 = gr.Audio(label="Output Audio", interactive=False) with gr.TabItem("小工具/实验室特性"): gr.Markdown(value=""" So-vits-svc 4.0 小工具/实验室特性 """) with gr.Tabs(): with gr.TabItem("静态声线融合"): gr.Markdown(value=""" 介绍:该功能可以将多个声音模型合成为一个声音模型(多个模型参数的凸组合或线性组合),从而制造出现实中不存在的声线 注意: 1.该功能仅支持单说话人的模型 2.如果强行使用多说话人模型,需要保证多个模型的说话人数量相同,这样可以混合同一个SpaekerID下的声音 3.保证所有待混合模型的config.json中的model字段是相同的 4.输出的混合模型可以使用待合成模型的任意一个config.json,但聚类模型将不能使用 5.批量上传模型的时候最好把模型放到一个文件夹选中后一起上传 6.混合比例调整建议大小在0-100之间,也可以调为其他数字,但在线性组合模式下会出现未知的效果 7.混合完毕后,文件将会保存在项目根目录中,文件名为output.pth 8.凸组合模式会将混合比例执行Softmax使混合比例相加为1,而线性组合模式不会 """) mix_model_path = gr.Files(label="选择需要混合模型文件") mix_model_upload_button = gr.UploadButton("选择/追加需要混合模型文件", file_count="multiple", variant="primary") mix_model_output1 = gr.Textbox( label="混合比例调整,单位/%", interactive = True ) mix_mode = gr.Radio(choices=["凸组合", "线性组合"], label="融合模式",value="凸组合",interactive = True) mix_submit = gr.Button("声线融合启动", variant="primary") mix_model_output2 = gr.Textbox( label="Output Message" ) mix_model_path.change(updata_mix_info,[mix_model_path],[mix_model_output1]) mix_model_upload_button.upload(upload_mix_append_file, [mix_model_upload_button,mix_model_path], [mix_model_path,mix_model_output1]) mix_submit.click(mix_submit_click, [mix_model_output1,mix_mode], [mix_model_output2]) with gr.Tabs(): with gr.Row(variant="panel"): with gr.Column(): gr.Markdown(value=""" WebUI设置 """) debug_button = gr.Checkbox(label="Debug模式,如果向社区反馈BUG需要打开,打开后控制台可以显示具体错误提示", value=debug) vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling,enhancer_adaptive_key,cr_threshold], [vc_output1, vc_output2]) vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,tts_voice,F0_mean_pooling,enhancer_adaptive_key,cr_threshold], [vc_output1, vc_output2]) debug_button.change(debug_change,[],[]) model_load_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device,enhance],[sid,sid_output]) model_unload_button.click(modelUnload,[],[sid,sid_output]) app.launch()