Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
# 1. 加载模型和分词器 | |
model_name = "jinaai/jina-embeddings-v3" # 替换为您实际使用的模型名 | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True) | |
# 2. 定义生成嵌入的函数 | |
def generate_embeddings(text): | |
# 使用分词器处理输入文本 | |
inputs = tokenizer(text, return_tensors="pt") | |
# 禁用梯度计算,以减少资源消耗 | |
with torch.no_grad(): | |
# 获取最后一层隐藏状态并计算平均值作为嵌入 | |
embeddings = model(**inputs).last_hidden_state.mean(dim=1) | |
# 将嵌入转换为Python列表,方便Gradio输出 | |
return embeddings.numpy().tolist() | |
# 3. 使用Gradio定义接口 | |
iface = gr.Interface( | |
fn=generate_embeddings, # 调用嵌入生成函数 | |
inputs="text", # 输入类型为文本 | |
outputs="json", # 输出为JSON格式,方便API调用 | |
title="Text Embedding Generator", | |
description="Enter text to generate embeddings using the Jina model." | |
) | |
# 4. 启动Gradio应用 | |
if __name__ == "__main__": | |
iface.launch() | |