# Copyright Volkan Kücükbudak # Github: https://github.com/volkansah import streamlit as st import google.generativeai as genai from PIL import Image import io import base64 st.set_page_config(page_title="Gemini AI Chat", layout="wide") st.title("🤖 Gemini AI Chat Interface") st.markdown(""" **Welcome to the Gemini AI Chat Interface!** Chat seamlessly with Google's advanced Gemini AI models, supporting both text and image inputs. 🔗 [GitHub Profile](https://github.com/volkansah) | 📂 [Project Repository](https://github.com/volkansah/gemini-ai-chat) | 💬 [Soon](https://aicodecraft.io) Follow me for more innovative projects and updates! """) def encode_image(image): """Convert PIL Image to base64 string""" buffered = io.BytesIO() image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() encoded_image = base64.b64encode(image_bytes).decode('utf-8') return encoded_image # Sidebar for settings with st.sidebar: api_key = st.text_input("Enter Google AI API Key", type="password") model = st.selectbox( "Select Model", [ "gemini-1.5-flash", "gemini-1.5-pro", "gemini-1.5-flash-8B", "gemini-1.5-pro-vision-latest", "gemini-1.0-pro", "gemini-1.0-pro-vision-latest" ] ) temperature = st.slider("Temperature", 0.0, 1.0, 0.7) max_tokens = st.slider("Max Tokens", 1, 2048, 1000) system_prompt = st.text_area("System Prompt (Optional)") # Initialize session state for chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat history for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # File uploader for images uploaded_file = st.file_uploader("Upload an image (optional)", type=["jpg", "jpeg", "png"]) uploaded_image = None if uploaded_file is not None: uploaded_image = Image.open(uploaded_file).convert('RGB') st.image(uploaded_image, caption="Uploaded Image", use_container_width=True) # Chat input user_input = st.chat_input("Type your message here...") if user_input and api_key: try: # Configure the API genai.configure(api_key=api_key) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": user_input}) with st.chat_message("user"): st.markdown(user_input) # Prepare the model and content model_instance = genai.GenerativeModel(model_name=model) content = [] if uploaded_image: # Convert image to base64 encoded_image = encode_image(uploaded_image) content = [ {"text": user_input}, { "inline_data": { "mime_type": "image/jpeg", "data": encoded_image } } ] else: content = [{"text": user_input}] # Generate response response = model_instance.generate_content( content, generation_config=genai.types.GenerationConfig( temperature=temperature, max_output_tokens=max_tokens ) ) # Display assistant response with st.chat_message("assistant"): st.markdown(response.text) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response.text}) except Exception as e: st.error(f"Error: {str(e)}") st.error("If using an image, make sure to select a vision-enabled model (ones with 'vision' in the name)") elif not api_key and user_input: st.warning("Please enter your API key in the sidebar first.") # Instructions in the sidebar with st.sidebar: st.markdown(""" ## 📝 Instructions: 1. Enter your Google AI API key 2. Select a model (use vision models for image analysis) 3. Adjust temperature and max tokens if needed 4. Optional: Set a system prompt 5. Upload an image (optional) 6. Type your message and press Enter ### Copyright Volkan Kücükbudak """)