File size: 4,442 Bytes
dc9257c
 
7103623
 
 
 
254bad9
7103623
 
 
b6d419f
 
 
 
 
 
 
 
 
 
 
 
 
7103623
254bad9
 
 
 
 
 
 
 
7103623
 
 
 
 
 
1891a67
7103623
1891a67
7103623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254bad9
7103623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254bad9
7103623
254bad9
 
 
 
 
 
 
 
 
 
 
 
 
7103623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254bad9
7103623
 
 
 
 
 
 
 
 
254bad9
7103623
 
 
 
f61fa75
 
 
 
7103623
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright Volkan Kรผcรผkbudak
# Github: https://github.com/volkansah
import streamlit as st
import google.generativeai as genai
from PIL import Image
import io
import base64

st.set_page_config(page_title="Gemini AI Chat", layout="wide")

st.title("๐Ÿค– Gemini AI Chat Interface")
st.markdown("""
**Welcome to the Gemini AI Chat Interface!**

Chat seamlessly with Google's advanced Gemini AI models, supporting both text and image inputs.

๐Ÿ”— [GitHub Profile](https://github.com/volkansah) | 
๐Ÿ“‚ [Project Repository](https://github.com/volkansah/gemini-ai-chat) | 
๐Ÿ’ฌ [Soon](https://aicodecraft.io)

Follow me for more innovative projects and updates!
""")


def encode_image(image):
    """Convert PIL Image to base64 string"""
    buffered = io.BytesIO()
    image.save(buffered, format="JPEG")
    image_bytes = buffered.getvalue()
    encoded_image = base64.b64encode(image_bytes).decode('utf-8')
    return encoded_image

# Sidebar for settings
with st.sidebar:
    api_key = st.text_input("Enter Google AI API Key", type="password")
    model = st.selectbox(
        "Select Model",
        [
            "gemini-1.5-flash",
            "gemini-1.5-pro",
            "gemini-1.5-flash-8B",
            "gemini-1.5-pro-vision-latest",
            "gemini-1.0-pro",
            "gemini-1.0-pro-vision-latest"
        ]
    )
    
    temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
    max_tokens = st.slider("Max Tokens", 1, 2048, 1000)
    system_prompt = st.text_area("System Prompt (Optional)")

# Initialize session state for chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat history
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# File uploader for images
uploaded_file = st.file_uploader("Upload an image (optional)", type=["jpg", "jpeg", "png"])
uploaded_image = None
if uploaded_file is not None:
    uploaded_image = Image.open(uploaded_file).convert('RGB')
    st.image(uploaded_image, caption="Uploaded Image", use_container_width=True)

# Chat input
user_input = st.chat_input("Type your message here...")

if user_input and api_key:
    try:
        # Configure the API
        genai.configure(api_key=api_key)
        
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": user_input})
        with st.chat_message("user"):
            st.markdown(user_input)

        # Prepare the model and content
        model_instance = genai.GenerativeModel(model_name=model)
        
        content = []
        if uploaded_image:
            # Convert image to base64
            encoded_image = encode_image(uploaded_image)
            content = [
                {"text": user_input},
                {
                    "inline_data": {
                        "mime_type": "image/jpeg",
                        "data": encoded_image
                    }
                }
            ]
        else:
            content = [{"text": user_input}]

        # Generate response
        response = model_instance.generate_content(
            content,
            generation_config=genai.types.GenerationConfig(
                temperature=temperature,
                max_output_tokens=max_tokens
            )
        )

        # Display assistant response
        with st.chat_message("assistant"):
            st.markdown(response.text)
        
        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": response.text})

    except Exception as e:
        st.error(f"Error: {str(e)}")
        st.error("If using an image, make sure to select a vision-enabled model (ones with 'vision' in the name)")

elif not api_key and user_input:
    st.warning("Please enter your API key in the sidebar first.")

# Instructions in the sidebar
with st.sidebar:
    st.markdown("""
    ## ๐Ÿ“ Instructions:
    1. Enter your Google AI API key
    2. Select a model (use vision models for image analysis)
    3. Adjust temperature and max tokens if needed
    4. Optional: Set a system prompt
    5. Upload an image (optional)
    6. Type your message and press Enter
    ### About
    ๐Ÿ”— [GitHub Profile](https://github.com/volkansah) | 
    ๐Ÿ“‚ [Project Repository](https://github.com/volkansah/gemini-ai-chat) | 
    ๐Ÿ’ฌ [Soon](https://aicodecraft.io)
    """)