yixinsong's picture
minor
dc5cd50
raw
history blame
6.8 kB
import os
import torch
from threading import Thread
from typing import List, Optional, Tuple, Dict
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import spaces
from pathlib import Path
from huggingface_hub import CommitScheduler
import uuid
import json
# Constants
SYSTEM_PROMPT = """You are SmallThinker-3B, a helpful AI assistant. You try to follow instructions as much as possible while being accurate and brief."""
device = "cuda" if torch.cuda.is_available() else "cpu"
TITLE = "<h1><center>SmallThinker-3B Chat</center></h1>"
MODEL_PATH = "PowerInfer/SmallThinker-3B-Preview"
# Custom CSS with dark theme
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.chat-container {
height: 500px !important;
overflow-y: auto !important;
flex-direction: column !important;
}
.messages-container {
flex-grow: 1 !important;
overflow-y: auto !important;
padding-right: 10px !important;
}
.contain {
height: 100% !important;
}
button {
border-radius: 8px !important;
}
"""
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch.bfloat16,
).to(device)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
logs_id = os.getenv("LOGS_ID")
logs_token = os.getenv("HF_LOGS_TOKEN")
logs_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
logs_folder = logs_file.parent
scheduler = CommitScheduler(
repo_id=logs_id,
repo_type="dataset",
folder_path=logs_folder,
path_in_repo="data",
every=5,
token=logs_token,
private=True,
)
@spaces.GPU
def stream_chat(
message: str,
history: list,
temperature: float = 0.3,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
repetition_penalty: float = 1.2,
):
# Create new history list with current message
new_history = history + [[message, ""]]
conversation = []
# Only include previous messages in the conversation
for prompt, answer in history:
conversation.extend([
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
streamer=streamer,
pad_token_id=tokenizer.pad_token_id,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("\nUser", "")
buffer = buffer.replace("\nSystem", "")
new_history[-1][1] = buffer
yield new_history
with scheduler.lock:
with logs_file.open("a") as f:
f.write(json.dumps({"input": input_text.replace(SYSTEM_PROMPT, ""), "output": buffer.replace(SYSTEM_PROMPT, ""), "model": "SmallThinker-3B"}))
f.write("\n")
def clear_input():
return ""
def add_message(message: str, history: list):
if message.strip() != "":
history = history + [[message, ""]]
return history
def clear_session() -> Tuple[str, List]:
return '', []
def main():
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
with gr.Row():
with gr.Accordion(label="Chat Interface", open=True):
chatbot = gr.Chatbot(
label='SmallThinker-3B',
height=500,
container=True,
elem_classes=["chat-container"]
)
with gr.Accordion(label="⚙️ Parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature")
max_new_tokens = gr.Slider(minimum=128, maximum=32768, step=128, value=16384, label="Max new tokens")
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Top-p")
top_k = gr.Slider(minimum=1, maximum=100, step=1, value=20, label="Top-k")
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.1, label="Repetition penalty")
textbox = gr.Textbox(lines=1, label='Input')
with gr.Row():
clear_history = gr.Button("🧹 Clear History")
submit = gr.Button("🚀 Send")
# Chain of events for submit button
submit_event = submit.click(
fn=add_message,
inputs=[textbox, chatbot],
outputs=chatbot,
queue=False
).then(
fn=clear_input,
outputs=textbox,
queue=False
).then(
fn=stream_chat,
inputs=[textbox, chatbot, temperature, max_new_tokens, top_p, top_k, repetition_penalty],
outputs=chatbot,
show_progress=True
)
# Chain of events for enter key
enter_event = textbox.submit(
fn=add_message,
inputs=[textbox, chatbot],
outputs=chatbot,
queue=False
).then(
fn=clear_input,
outputs=textbox,
queue=False
).then(
fn=stream_chat,
inputs=[textbox, chatbot, temperature, max_new_tokens, top_p, top_k, repetition_penalty],
outputs=chatbot,
show_progress=True
)
clear_history.click(fn=clear_session,
outputs=[textbox, chatbot])
demo.launch()
if __name__ == "__main__":
main()