Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from torch.utils.data import DataLoader | |
import torchvision | |
from tqdm import tqdm | |
from dataset import VGGSound | |
import torch | |
import torch.nn as nn | |
from metrics import metrics | |
from omegaconf import OmegaConf | |
from model import VGGishish | |
from transforms import Crop, StandardNormalizeAudio, ToTensor | |
if __name__ == '__main__': | |
cfg_cli = OmegaConf.from_cli() | |
print(cfg_cli.config) | |
cfg_yml = OmegaConf.load(cfg_cli.config) | |
# the latter arguments are prioritized | |
cfg = OmegaConf.merge(cfg_yml, cfg_cli) | |
OmegaConf.set_readonly(cfg, True) | |
print(OmegaConf.to_yaml(cfg)) | |
# logger = LoggerWithTBoard(cfg) | |
transforms = [ | |
StandardNormalizeAudio(cfg.mels_path), | |
ToTensor(), | |
] | |
if cfg.cropped_size not in [None, 'None', 'none']: | |
transforms.append(Crop(cfg.cropped_size)) | |
transforms = torchvision.transforms.transforms.Compose(transforms) | |
datasets = { | |
'test': VGGSound('test', cfg.mels_path, transforms), | |
} | |
loaders = { | |
'test': DataLoader(datasets['test'], batch_size=cfg.batch_size, | |
num_workers=cfg.num_workers, pin_memory=True) | |
} | |
device = torch.device(cfg.device if torch.cuda.is_available() else 'cpu') | |
model = VGGishish(cfg.conv_layers, cfg.use_bn, num_classes=len(datasets['test'].target2label)) | |
model = model.to(device) | |
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.learning_rate) | |
criterion = nn.CrossEntropyLoss() | |
# loading the best model | |
folder_name = os.path.split(cfg.config)[0].split('/')[-1] | |
print(folder_name) | |
ckpt = torch.load(f'./logs/{folder_name}/vggishish-{folder_name}.pt', map_location='cpu') | |
model.load_state_dict(ckpt['model']) | |
print((f'The model was trained for {ckpt["epoch"]} epochs. Loss: {ckpt["loss"]:.4f}')) | |
# Testing the model | |
model.eval() | |
running_loss = 0 | |
preds_from_each_batch = [] | |
targets_from_each_batch = [] | |
for i, batch in enumerate(tqdm(loaders['test'])): | |
inputs = batch['input'].to(device) | |
targets = batch['target'].to(device) | |
# zero the parameter gradients | |
optimizer.zero_grad() | |
# forward + backward + optimize | |
with torch.set_grad_enabled(False): | |
outputs = model(inputs) | |
loss = criterion(outputs, targets) | |
# loss | |
running_loss += loss.item() | |
# for metrics calculation later on | |
preds_from_each_batch += [outputs.detach().cpu()] | |
targets_from_each_batch += [targets.cpu()] | |
# logging metrics | |
preds_from_each_batch = torch.cat(preds_from_each_batch) | |
targets_from_each_batch = torch.cat(targets_from_each_batch) | |
test_metrics_dict = metrics(targets_from_each_batch, preds_from_each_batch) | |
test_metrics_dict['avg_loss'] = running_loss / len(loaders['test']) | |
test_metrics_dict['param_num'] = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
# TODO: I have no idea why tboard doesn't keep metrics (hparams) in a tensorboard when | |
# I run this experiment from cli: `python main.py config=./configs/vggish.yaml` | |
# while when I run it in vscode debugger the metrics are present in the tboard (weird) | |
print(test_metrics_dict) | |