guowenxiang's picture
Update ldm/modules/diffusionmodules/flag_large_dit_moe.py
a310b79 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import numpy as np
import functools
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
import warnings
import math
import torch.nn.functional as F
from flash_attn import flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
from einops import rearrange
try:
from flash_attn import flash_attn_func
is_flash_attn = True
except:
is_flash_attn = False
try:
from apex.normalization import FusedRMSNorm as RMSNorm
except ImportError:
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
return output * self.weight
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def num_params(model, print_out=True, model_name="model"):
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
return parameters
#############################################################################
# Core DiT Model #
#############################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class Conv1DFinalLayer(nn.Module):
"""
The final layer of CrossAttnDiT.
"""
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = nn.GroupNorm(16,hidden_size)
self.conv1d = nn.Conv1d(hidden_size, out_channels,kernel_size=1)
def forward(self, x): # x:(B,C,T)
x = self.norm_final(x)
x = self.conv1d(x)
return x
class ConditionEmbedder(nn.Module):
def __init__(self, hidden_size, context_dim):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(context_dim, hidden_size, bias=True),
nn.GELU(), # approximate='tanh'
nn.Linear(hidden_size, hidden_size, bias=True),
nn.LayerNorm(hidden_size)
)
def forward(self,x):
return self.mlp(x)
class Attention(nn.Module):
def __init__(self, dim: int, n_heads: int, n_kv_heads: Optional[int], qk_norm: bool, y_dim: int):
super().__init__()
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
model_parallel_size = 1
self.n_local_heads = n_heads // model_parallel_size
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = dim // n_heads
self.wq = nn.Linear(
dim, n_heads * self.head_dim, bias=False
)
self.wk = nn.Linear(
dim, self.n_kv_heads * self.head_dim, bias=False
)
self.wv = nn.Linear(
dim, self.n_kv_heads * self.head_dim, bias=False
)
if y_dim > 0:
self.wk_y = nn.Linear(
y_dim, self.n_kv_heads * self.head_dim, bias=False
)
self.wv_y = nn.Linear(
y_dim, self.n_kv_heads * self.head_dim, bias=False
)
self.gate = nn.Parameter(torch.zeros([self.n_local_heads]))
self.wo = nn.Linear(
n_heads * self.head_dim, dim, bias=False
)
if qk_norm:
self.q_norm = nn.LayerNorm(self.n_local_heads * self.head_dim)
self.k_norm = nn.LayerNorm(self.n_local_kv_heads * self.head_dim)
if y_dim > 0:
self.ky_norm = nn.LayerNorm(self.n_local_kv_heads * self.head_dim)
else:
self.ky_norm = nn.Identity()
else:
self.q_norm = self.k_norm = nn.Identity()
self.ky_norm = nn.Identity()
@staticmethod
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
"""
Reshape frequency tensor for broadcasting it with another tensor.
This function reshapes the frequency tensor to have the same shape as
the target tensor 'x' for the purpose of broadcasting the frequency
tensor during element-wise operations.
Args:
freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
x (torch.Tensor): Target tensor for broadcasting compatibility.
Returns:
torch.Tensor: Reshaped frequency tensor.
Raises:
AssertionError: If the frequency tensor doesn't match the expected
shape.
AssertionError: If the target tensor 'x' doesn't have the expected
number of dimensions.
"""
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1
for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
@staticmethod
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency
tensor.
This function applies rotary embeddings to the given query 'xq' and
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
input tensors are reshaped as complex numbers, and the frequency tensor
is reshaped for broadcasting compatibility. The resulting tensors
contain rotary embeddings and are returned as real tensors.
Args:
xq (torch.Tensor): Query tensor to apply rotary embeddings.
xk (torch.Tensor): Key tensor to apply rotary embeddings.
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
exponentials.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
and key tensor with rotary embeddings.
"""
with torch.cuda.amp.autocast(enabled=False):
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = Attention.reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
# copied from huggingface modeling_llama.py
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.n_local_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
def forward(
self, x: torch.Tensor, x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
y: torch.Tensor, y_mask: torch.Tensor,
) -> torch.Tensor:
"""
Forward pass of the attention module.
Args:
x (torch.Tensor): Input tensor.
freqs_cis (torch.Tensor): Precomputed frequency tensor.
Returns:
torch.Tensor: Output tensor after attention.
"""
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
dtype = xq.dtype
xq = self.q_norm(xq)
xk = self.k_norm(xk)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xq, xk = Attention.apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
xq, xk = xq.to(dtype), xk.to(dtype)
if is_flash_attn and dtype in [torch.float16, torch.bfloat16]:
# begin var_len flash attn
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
xq, xk, xv, x_mask, seqlen
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
if self.proportional_attn:
softmax_scale = math.sqrt(math.log(seqlen, self.base_seqlen) / self.head_dim)
else:
softmax_scale = math.sqrt(1 / self.head_dim)
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=0.,
causal=False,
softmax_scale=softmax_scale
)
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
# end var_len_flash_attn
else:
output = F.scaled_dot_product_attention(
xq.permute(0, 2, 1, 3),
xk.permute(0, 2, 1, 3),
xv.permute(0, 2, 1, 3),
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_local_heads, seqlen, -1),
).permute(0, 2, 1, 3).to(dtype)
if hasattr(self, "wk_y"): # cross-attention
yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_local_kv_heads, self.head_dim)
yv = self.wv_y(y).view(bsz, -1, self.n_local_kv_heads, self.head_dim)
n_rep = self.n_local_heads // self.n_local_kv_heads
if n_rep >= 1:
yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
output_y = F.scaled_dot_product_attention(
xq.permute(0, 2, 1, 3),
yk.permute(0, 2, 1, 3),
yv.permute(0, 2, 1, 3),
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seqlen, -1)
).permute(0, 2, 1, 3)
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
output = output + output_y
output = output.flatten(-2)
return self.wo(output)
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6,
)
self.linear = nn.Linear(
hidden_size, out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
hidden_size, 2 * hidden_size, bias=True
),
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple
of this value.
ffn_dim_multiplier (float, optional): Custom multiplier for hidden
dimension. Defaults to None.
Attributes:
w1 (nn.Linear): Linear transformation for the first
layer.
w2 (nn.Linear): Linear transformation for the second layer.
w3 (nn.Linear): Linear transformation for the third
layer.
"""
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * (
(hidden_dim + multiple_of - 1) // multiple_of
)
self.w1 = nn.Linear(
dim, hidden_dim, bias=False
)
self.w2 = nn.Linear(
hidden_dim, dim, bias=False
)
self.w3 = nn.Linear(
dim, hidden_dim, bias=False
)
# @torch.compile
def _forward_silu_gating(self, x1, x3):
return F.silu(x1) * x3
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
class MoE(nn.Module):
LOAD_BALANCING_LOSSES = []
def __init__(
self,
dim: int,
hidden_dim: int,
num_experts: int,
multiple_of: int,
ffn_dim_multiplier: float
):
super().__init__()
self.num_freq_experts = num_experts
self.local_experts = [str(i) for i in range(num_experts)]
self.time_experts = nn.ModuleDict({
i : FeedForward(dim, hidden_dim, multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,) for i in self.local_experts
})
self.freq_experts = nn.ModuleDict({
i: FeedForward(dim, hidden_dim, multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier, ) for i in self.local_experts
})
def forward(self, x, time):
orig_shape = x.shape # [B, T, 768]
x = x.view(-1, x.shape[-1]) # [N, 768] 按照sample1 sample2 sample3拍平
expert_indices = (time // 250).unsqueeze(1).repeat(1, orig_shape[1])
flat_expert_indices = expert_indices.view(-1) # [N] 找到每个expert位置
# time-moe
y = torch.zeros_like(x)
for str_i, expert in self.time_experts.items(): # 找到需要用哪个expert算
y[flat_expert_indices == int(str_i)] = expert(x[flat_expert_indices == int(str_i)])
y = y.view(*orig_shape).to(x)
z = torch.zeros_like(y)
# frequency-moe
range = orig_shape[-1] // self.num_freq_experts
for str_i, expert in self.freq_experts.items(): # 找到需要用哪个expert算
idx = int(str_i)
region = torch.zeros_like(z)
region[:, :, range * idx: range * (idx+1)] = True
z[:, :, range * idx: range * (idx+1)] = expert(y * region)[:, :, range * idx: range * (idx+1)]
return z.view(*orig_shape).to(y)
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, dim: int, n_heads: int, n_kv_heads: int,
multiple_of: int, ffn_dim_multiplier: float, norm_eps: float,
qk_norm: bool, y_dim: int, num_experts) -> None:
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim)
self.feed_forward = MoE(
dim=dim, hidden_dim=4 * dim, multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier, num_experts=num_experts,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(dim, eps=norm_eps)
self.ffn_norm = RMSNorm(dim, eps=norm_eps)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
dim, 6 * dim, bias=True
),
)
self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
y: torch.Tensor,
y_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor] = None,
time=None
):
"""
Perform a forward pass through the TransformerBlock.
Args:
x (torch.Tensor): Input tensor.
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
mask (torch.Tensor, optional): Masking tensor for attention.
Defaults to None.
Returns:
torch.Tensor: Output tensor after applying attention and
feedforward layers.
"""
if adaln_input is not None:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = \
self.adaLN_modulation(adaln_input).chunk(6, dim=1)
h = x + gate_msa.unsqueeze(1) * self.attention(
modulate(self.attention_norm(x), shift_msa, scale_msa),
x_mask,
freqs_cis,
self.attention_y_norm(y), y_mask
)
out = h + gate_mlp.unsqueeze(1) * self.feed_forward(
modulate(self.ffn_norm(h), shift_mlp, scale_mlp), time,
)
else:
h = x + self.attention(
self.attention_norm(x), x_mask, freqs_cis, self.attention_y_norm(y), y_mask,
)
out = h + self.feed_forward(self.ffn_norm(h), time)
return out
class VideoFlagLargeDiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
in_channels,
context_dim,
hidden_size=1152,
depth=28,
num_heads=16,
max_len = 1000,
n_kv_heads=None,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps=1e-5,
qk_norm=None,
rope_scaling_factor: float = 1.,
ntk_factor: float = 1,
num_experts=8,
):
super().__init__()
self.in_channels = in_channels # vae dim
self.out_channels = in_channels
self.num_heads = num_heads
self.t_embedder = TimestepEmbedder(hidden_size)
self.c_embedder = ConditionEmbedder(hidden_size, context_dim)
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
self.cap_embedder = nn.Sequential(
nn.LayerNorm(hidden_size),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.blocks = nn.ModuleList([
TransformerBlock(layer_id, hidden_size, num_heads, n_kv_heads, multiple_of,
ffn_dim_multiplier, norm_eps, qk_norm, hidden_size, num_experts)
for layer_id in range(depth)
])
self.freqs_cis = VideoFlagLargeDiT.precompute_freqs_cis(hidden_size // num_heads, max_len,
rope_scaling_factor=rope_scaling_factor, ntk_factor=ntk_factor)
self.final_layer = FinalLayer(hidden_size, self.out_channels)
self.rope_scaling_factor = rope_scaling_factor
self.ntk_factor = ntk_factor
num_params(self.blocks, model_name='transformer block')
def forward(self, x, t, context):
"""
Forward pass of DiT.
x: (N, C, T) tensor of temporal inputs (latent representations of melspec)
t: (N,) tensor of diffusion timesteps
y: (N,max_tokens_len=77, context_dim)
"""
self.freqs_cis = self.freqs_cis.to(x.device)
x = rearrange(x, 'b c t -> b t c')
x = self.proj_in(x)
cap_mask = torch.ones((context.shape[0], context.shape[1]), dtype=torch.int32, device=x.device) # [B, T] video时一直用非mask
mask = torch.ones((x.shape[0], x.shape[1]), dtype=torch.int32, device=x.device)
t_embedding = self.t_embedder(t) # [B, 768]
c = self.c_embedder(context) # [B, T, 768]
# get pooling feature
cap_mask_float = cap_mask.float().unsqueeze(-1)
cap_feats_pool = (c * cap_mask_float).sum(dim=1) / cap_mask_float.sum(dim=1)
cap_feats_pool = cap_feats_pool.to(c) # [B, 768]
cap_emb = self.cap_embedder(cap_feats_pool) # [B, 768]
adaln_input = t_embedding + cap_emb
cap_mask = cap_mask.bool()
for block in self.blocks:
x = block(
x, mask, c, cap_mask, self.freqs_cis[:x.size(1)],
adaln_input=adaln_input, time=t
)
x = self.final_layer(x, adaln_input) # (N, out_channels,T)
x = rearrange(x, 'b t c -> b c t')
return x
@staticmethod
def precompute_freqs_cis(
dim: int,
end: int,
theta: float = 10000.0,
rope_scaling_factor: float = 1.0,
ntk_factor: float = 1.0
):
"""
Precompute the frequency tensor for complex exponentials (cis) with
given dimensions.
This function calculates a frequency tensor with complex exponentials
using the given dimension 'dim' and the end index 'end'. The 'theta'
parameter scales the frequencies. The returned tensor contains complex
values in complex64 data type.
Args:
dim (int): Dimension of the frequency tensor.
end (int): End index for precomputing frequencies.
theta (float, optional): Scaling factor for frequency computation.
Defaults to 10000.0.
Returns:
torch.Tensor: Precomputed frequency tensor with complex
exponentials.
"""
theta = theta * ntk_factor
print(f"theta {theta} rope scaling {rope_scaling_factor} ntk {ntk_factor}")
freqs = 1.0 / (theta ** (
torch.arange(0, dim, 2)[: (dim // 2)].float().cuda() / dim
))
t = torch.arange(end, device=freqs.device, dtype=torch.float) # type: ignore
t = t / rope_scaling_factor
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis