File size: 13,751 Bytes
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import argparse, os, sys, glob
import pathlib
directory = pathlib.Path(os.getcwd())
print(directory)
sys.path.append(str(directory))
import torch
import numpy as np
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
from ldm.models.diffusion.cfm1_audio_sampler import CFMSampler
import random, math, librosa
from vocoder.bigvgan.models import VocoderBigVGAN
import soundfile
from pathlib import Path
from tqdm import tqdm
def load_model_from_config(config, ckpt = None, verbose=True):
    model = instantiate_from_config(config.model)
    if ckpt:
        print(f"Loading model from {ckpt}")
        pl_sd = torch.load(ckpt, map_location="cpu")
        sd = pl_sd["state_dict"]

        print(f'---------------------------epoch : {pl_sd["epoch"]}, global step: {pl_sd["global_step"]//1e3}k---------------------------')

        m, u = model.load_state_dict(sd, strict=False)
        if len(m) > 0 and verbose:
            print("missing keys:")
            print(m)
        if len(u) > 0 and verbose:
            print("unexpected keys:")
            print(u)
    else:
        print(f"Note chat no ckpt is loaded !!!")

    model.cuda()
    model.eval()
    return model


def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--sample_rate",
        type=int,
        default="16000",
        help="sample rate of wav"
    )
    parser.add_argument(
        "--length",
        type=int,
        default=None,
        help="length of wav"
    )
    parser.add_argument(
        "--test-dataset",
        default="vggsound",
        help="test which dataset: vggsound/landscape/fsd50k"
    )
    parser.add_argument(
        "--outdir",
        type=str,
        nargs="?",
        help="dir to write results to",
        default="outputs/txt2audio-samples"
    )
    parser.add_argument(
        "--ddim_steps",
        type=int,
        default=25,
        help="number of ddim sampling steps",
    )


    parser.add_argument(
        "--n_samples",
        type=int,
        default=1,
        help="how many samples to produce for the given prompt",
    )

    parser.add_argument(
        "--scale",
        type=float,
        default=1.0, # if it's 1, only condition is taken into consideration
        help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
    )
    parser.add_argument(
        "-r",
        "--resume",
        type=str,
        const=True,
        default="",
        nargs="?",
        help="resume from logdir or checkpoint in logdir",
    )
    parser.add_argument(
        "-b",
        "--base",
        type=str,
        help="paths to base configs. Loaded from left-to-right. "
             "Parameters can be overwritten or added with command-line options of the form `--key value`.",
        default="",
    )


    return parser.parse_args()


def get_tail_mask(spec_truncate, gt_mel, gt_video_feat, fps, sr, truncate, hop_len, device):
    # apply mask
    masked_spec = int(spec_truncate * 0.5)  # 16帧的倍数,最多mask 50%
    masked_truncate = int(masked_spec * hop_len)
    masked_frame = int(fps * masked_truncate / sr)

    start_masked_idx = truncate * 0.25
    start_masked_frame = int(fps * start_masked_idx / sr)
    start_masked_spec = int(start_masked_idx / hop_len)

    spec = gt_mel.copy()
    spec[:, start_masked_spec:start_masked_spec + masked_spec] = torch.zeros((80, masked_spec))
    gt_video_feat[start_masked_frame:start_masked_frame + masked_frame, :] = np.zeros((masked_frame, 512))

    spec = torch.from_numpy(spec).unsqueeze(0).to(device)
    gt_video_feat = torch.from_numpy(gt_video_feat).unsqueeze(0).to(device)
    return spec, gt_video_feat


def get_random_mask(spec_truncate, gt_mel, gt_video_feat, fps, sr, truncate, hop_len, device):
    # apply mask
    masked_spec = random.randint(1, int(spec_truncate * 0.5 // 16)) * 16  # 16帧的倍数,最多mask 50%
    masked_truncate = int(masked_spec * hop_len)
    masked_frame = int(fps * masked_truncate / sr)

    start_masked_idx = random.randint(0, truncate - masked_truncate - 1)
    start_masked_frame = int(fps * start_masked_idx / sr)
    start_masked_spec = int(start_masked_idx / hop_len)

    spec = gt_mel.copy()
    spec[:, start_masked_spec:start_masked_spec + masked_spec] = torch.zeros((80, masked_spec))
    gt_video_feat[start_masked_frame:start_masked_frame + masked_frame, :] = np.zeros((masked_frame, 512))

    spec = torch.from_numpy(spec).unsqueeze(0).to(device)
    gt_video_feat = torch.from_numpy(gt_video_feat).unsqueeze(0).to(device)
    return spec, gt_video_feat

def main():
    opt = parse_args()

    config = OmegaConf.load(opt.base)
    # print("-------quick debug no load ckpt---------")
    # model = instantiate_from_config(config['model'])# for quick debug
    model = load_model_from_config(config, opt.resume)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)

    sampler = CFMSampler(model, opt.ddim_steps)

    os.makedirs(opt.outdir, exist_ok=True)
    vocoder = VocoderBigVGAN(config['lightning']['callbacks']['image_logger']['params']['vocoder_cfg']['params']['ckpt_vocoder'], device)

    if os.path.exists('/apdcephfs/share_1316500/nlphuang/data/video_to_audio/vggsound/split_txt'):
        root = '/apdcephfs'
    else:
        root = '/apdcephfs_intern'

    if opt.test_dataset == 'vggsound':
        split, data = f'{root}/share_1316500/nlphuang/data/video_to_audio/vggsound/split_txt', f'{root}/share_1316500/nlphuang/data/video_to_audio/vggsound/'
        dataset1_spec_dir = os.path.join(data, "mel_maa2", "npy")
        dataset1_feat_dir = os.path.join(data, "cavp")

        with open(os.path.join(split, 'vggsound_test.txt'), "r") as f:
            data_list1 = f.readlines()
            data_list1 = list(map(lambda x: x.strip(), data_list1))
            spec_list1 = list(map(lambda x: os.path.join(dataset1_spec_dir, x) + "_mel.npy", data_list1))
            video_list1 = list(map(lambda x: os.path.join(dataset1_feat_dir, x) + ".npz",     data_list1))      # feat

    elif opt.test_dataset == 'landscape':
        split, data = f'{root}/share_1316500/nlphuang/data/video_to_audio/landscape/split/', f'{root}/share_1316500/nlphuang/data/video_to_audio/landscape/'

        dataset1_spec_dir = os.path.join(data, "melnone16000", "landscape_wav")
        dataset1_feat_dir = os.path.join(data, "landscape_visual_feat")
        with open(os.path.join(split, 'test.txt'), "r") as f:
            data_list1 = f.readlines()
            data_list1 = list(map(lambda x: x.strip(), data_list1))
            spec_list1 = list(map(lambda x: os.path.join(dataset1_spec_dir, 'test', x) + ".npy", data_list1))      # spec
            video_list1 = list(map(lambda x: os.path.join(dataset1_feat_dir, 'test', x.replace('_mel', '')) + ".npy", data_list1))      # feat

    elif opt.test_dataset == 'Aist':
        split, data = f'{root}/share_1316500/nlphuang/data/video_to_audio/aist/split/', f'{root}/share_1316500/nlphuang/data/video_to_audio/aist/'

        dataset1_spec_dir = os.path.join(data, "melnone16000", "AIST++_crop_wav")
        dataset1_feat_dir = os.path.join(data, "AIST++_crop_visual_feat")
        with open(os.path.join(split, 'test.txt'), "r") as f:
            data_list1 = f.readlines()
            data_list1 = list(map(lambda x: x.strip(), data_list1))
            spec_list1 = list(map(lambda x: os.path.join(dataset1_spec_dir, 'test', x) + ".npy", data_list1))      # spec
            video_list1 = list(map(lambda x: os.path.join(dataset1_feat_dir, 'test', x.replace('_mel', '')) + ".npy", data_list1))

    else:
        raise NotImplementedError


    sr, duration, truncate, fps = opt.sample_rate, config['data']['params']['train']['params']['dataset_cfg']['duration']\
        , config['data']['params']['train']['params']['dataset_cfg']['truncate'], config['data']['params']['train']['params']['dataset_cfg']['fps']
    hop_len = config['data']['params']['train']['params']['dataset_cfg']['hop_len']
    truncate_frame = int(fps * truncate / sr)
    spec_truncate = int(truncate / hop_len)

    if opt.scale != 1:
        unconditional = np.load(f'{root}/share_1316500/nlphuang/data/video_to_audio/vggsound/cavp/empty_vid.npz')['feat'].astype(np.float32)
        feat_len = fps * duration
        if unconditional.shape[0] < feat_len:
            unconditional = np.tile(unconditional, (math.ceil(feat_len / unconditional.shape[0]), 1))
        unconditional = unconditional[:int(feat_len)]
        unconditional = torch.from_numpy(unconditional).unsqueeze(0).to(device)
        unconditional = unconditional[:, :truncate_frame]


    # deal with long sequence
    shape = None
    if opt.length is not None:
        shape = (1, model.mel_dim, opt.length)

        from ldm.modules.diffusionmodules.flag_large_dit_moe import VideoFlagLargeDiT
        ntk_factor = opt.length // config['model']['params']['mel_length']
        # if hasattr(model.model.diffusion_model, 'ntk_factor') and ntk_factor != model.model.diffusion_model.ntk_factor:
        print(f"override freqs_cis, ntk_factor {ntk_factor}, flush=True")
        model.model.diffusion_model.freqs_cis = VideoFlagLargeDiT.precompute_freqs_cis(
            config['model']['params']['unet_config']['params']['hidden_size'] //
            config['model']['params']['unet_config']['params']['num_heads'],
            config['model']['params']['unet_config']['params']['max_len'],
            ntk_factor=ntk_factor
        )

    for i, (spec_path, video_feat_path) in enumerate(zip(spec_list1, video_list1)):
        name = Path(video_feat_path).stem

        if os.path.exists(os.path.join(opt.outdir, name + f'_0_gt.wav')):
            print(f'skip {name}')
            continue

        # waveform Features:
        try:
            spec_raw = np.load(spec_path).astype(np.float32)                    # channel: 1
        except:
            print(f"corrupted mel: {spec_path}", flush=True)
            spec_raw = np.zeros((80, 625), dtype=np.float32) # [C, T]

        try:
            video_feat = np.load(video_feat_path)['feat'].astype(np.float32)
        except:
            video_feat = np.load(video_feat_path).astype(np.float32)

        spec_len = sr * duration / hop_len
        if spec_raw.shape[1] < spec_len:
            spec_raw = np.tile(spec_raw, math.ceil(spec_len / spec_raw.shape[1]))
        spec_raw = spec_raw[:, :int(spec_len)]

        feat_len = fps * duration
        if video_feat.shape[0] < feat_len:
            video_feat = np.tile(video_feat, (math.ceil(feat_len / video_feat.shape[0]), 1))
        video_feat = video_feat[:int(feat_len)]

        window_num = video_feat.shape[0] // truncate_frame

        gt_mel_list, mel_list, masked_mel_list = [], [], []  # [sample_list1, sample_list2, sample_list3 ....]
        for i in tqdm(range(window_num), desc="Window:"):
            start, end = i * truncate_frame, (i + 1) * truncate_frame
            spec_start = int(start / fps * sr / hop_len)

            gt_video_feat = video_feat[start:end]
            gt_mel = spec_raw[:, spec_start: spec_start + spec_truncate]

            # apply mask
            # spec, gt_video_feat = get_random_mask(spec_truncate, gt_mel, gt_video_feat, fps, sr, truncate, hop_len, device)
            spec, gt_video_feat = get_tail_mask(spec_truncate, gt_mel, gt_video_feat, fps, sr, truncate, hop_len, device)


            # start sampling
            encoder_posterior = model.encode_first_stage(spec)
            z_spec = model.get_first_stage_encoding(encoder_posterior).detach()
            c = model.get_learned_conditioning({'mix_video_feat': gt_video_feat, 'mix_spec': z_spec})

            if opt.scale == 1: # w/o cfg
                sample, _ = sampler.sample(c, 1, timesteps=opt.ddim_steps, shape=shape)
            else:  # cfg
                uc = model.get_learned_conditioning({'mix_video_feat': unconditional, 'mix_spec': z_spec})
                sample, _ = sampler.sample_cfg(c, opt.scale, uc, 1, timesteps=opt.ddim_steps, shape=shape)

            x_samples_ddim = model.decode_first_stage(sample)
            mel_list.append(x_samples_ddim)
            masked_mel_list.append(spec)
            gt_mel_list.append(torch.from_numpy(gt_mel).unsqueeze(0))

        if len(mel_list) > 0:
           syn_mel = np.concatenate([mel.cpu() for mel in mel_list], 1)
        if len(gt_mel_list) > 0:
           gt_mel = np.concatenate([mel for mel in gt_mel_list], 1)
        if len(gt_mel_list) > 0:
           masked_mel = np.concatenate([mel.cpu() for mel in masked_mel_list], 1)

        for idx, (spec, x_samples_ddim, spec_masked) in enumerate(zip(gt_mel, syn_mel, masked_mel)):
            wav = vocoder.vocode(spec)
            wav_path = os.path.join(opt.outdir, name + f'_{idx}_gt.wav')
            soundfile.write(wav_path, wav, opt.sample_rate)

            wav = vocoder.vocode(spec_masked)
            wav_path = os.path.join(opt.outdir, name + f'_{idx}_mask.wav')
            soundfile.write(wav_path, wav, opt.sample_rate)

            ddim_wav = vocoder.vocode(x_samples_ddim)
            wav_path = os.path.join(opt.outdir, name + f'_{idx}.wav')
            soundfile.write(wav_path, ddim_wav, opt.sample_rate)

    print(f"Your samples are ready and waiting four you here: \n{opt.outdir} \nEnjoy.")

if __name__ == "__main__":
    main()