File size: 13,943 Bytes
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
from pytorch_memlab import LineProfiler,profile
import torch
import torch.nn as nn
import numpy as np
import pytorch_lightning as pl
from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange, repeat
from contextlib import contextmanager
from functools import partial
from tqdm import tqdm

from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps
from torchvision.utils import make_grid
try:
    from pytorch_lightning.utilities.distributed import rank_zero_only
except:
    from pytorch_lightning.utilities import rank_zero_only # torch2
from torchdyn.core import NeuralODE
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from ldm.models.diffusion.ddpm_audio import LatentDiffusion_audio, disabled_train
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from omegaconf import ListConfig

__conditioning_keys__ = {'concat': 'c_concat',
                         'crossattn': 'c_crossattn',
                         'adm': 'y'}


class CFM(LatentDiffusion_audio):

    def __init__(self, **kwargs):

        super(CFM, self).__init__(**kwargs)
        self.sigma_min = 1e-4

    def p_losses(self, x_start, cond, t, noise=None):
        x1 = x_start
        x0 = default(noise, lambda: torch.randn_like(x_start))
        ut = x1 - (1 - self.sigma_min) * x0  # 和ut的梯度没关系
        t_unsqueeze = t.unsqueeze(1).unsqueeze(1).float() / self.num_timesteps
        x_noisy = t_unsqueeze * x1 + (1. - (1 - self.sigma_min) * t_unsqueeze) * x0

        model_output = self.apply_model(x_noisy, t, cond)

        loss_dict = {}
        prefix = 'train' if self.training else 'val'
        target = ut

        mean_dims = list(range(1,len(target.shape)))
        loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims)
        loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})

        loss = loss_simple
        loss = self.l_simple_weight * loss.mean()
        loss_dict.update({f'{prefix}/loss': loss})

        return loss, loss_dict

    @torch.no_grad()
    def sample(self, cond, batch_size=16, timesteps=None, shape=None, x_latent=None, t_start=None, **kwargs):
        if shape is None:
            if self.channels > 0:
                shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
            else:
                shape = (batch_size, self.mel_dim, self.mel_length)
        if cond is not None:
            if isinstance(cond, dict):
                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
            else:
                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]

        neural_ode = NeuralODE(self.ode_wrapper(cond), solver='euler', sensitivity="adjoint", atol=1e-4, rtol=1e-4)
        t_span = torch.linspace(0, 1, 25 if timesteps is None else timesteps)
        if t_start is not None:
            t_span = t_span[t_start:]

        x0 = torch.randn(shape, device=self.device) if x_latent is None else x_latent
        eval_points, traj = neural_ode(x0, t_span)

        return traj[-1], traj

    def ode_wrapper(self, cond):
        # self.estimator receives x, mask, mu, t, spk as arguments
        return Wrapper(self, cond)

    @torch.no_grad()
    def sample_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning, batch_size=16, timesteps=None, shape=None, x_latent=None, t_start=None, **kwargs):
        if shape is None:
            if self.channels > 0:
                shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
            else:
                shape = (batch_size, self.mel_dim, self.mel_length)
        if cond is not None:
            if isinstance(cond, dict):
                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
            else:
                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]

        neural_ode = NeuralODE(self.ode_wrapper_cfg(cond, unconditional_guidance_scale, unconditional_conditioning), solver='euler', sensitivity="adjoint", atol=1e-4, rtol=1e-4)
        t_span = torch.linspace(0, 1, 25 if timesteps is None else timesteps)

        if t_start is not None:
            t_span = t_span[t_start:]

        x0 = torch.randn(shape, device=self.device) if x_latent is None else x_latent
        eval_points, traj = neural_ode(x0, t_span)

        return traj[-1], traj

    def ode_wrapper_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning):
        # self.estimator receives x, mask, mu, t, spk as arguments
        return Wrapper_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning)


    @torch.no_grad()
    def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
        # fast, but does not allow for exact reconstruction
        # t serves as an index to gather the correct alphas
        # if use_original_steps:
        #     sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
        #     sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
        # else:
        sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
        sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
        if noise is None:
            noise = torch.randn_like(x0)
        return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
                extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)


class Wrapper(nn.Module):
    def __init__(self, net, cond):
        super(Wrapper, self).__init__()
        self.net = net
        self.cond = cond

    def forward(self, t, x, args):
        t = torch.tensor([t * 1000] * x.shape[0], device=t.device).long()
        return self.net.apply_model(x, t, self.cond)


class Wrapper_cfg(nn.Module):

    def __init__(self, net, cond, unconditional_guidance_scale, unconditional_conditioning):
        super(Wrapper_cfg, self).__init__()
        self.net = net
        self.cond = cond
        self.unconditional_conditioning = unconditional_conditioning
        self.unconditional_guidance_scale = unconditional_guidance_scale

    def forward(self, t, x, args):
        x_in = torch.cat([x] * 2)
        t = torch.tensor([t * 1000] * x.shape[0], device=t.device).long()
        t_in = torch.cat([t] * 2)
        c_in = torch.cat([self.unconditional_conditioning, self.cond])  # c/uc shape [b,seq_len=77,dim=1024],c_in shape [b*2,seq_len,dim]
        e_t_uncond, e_t = self.net.apply_model(x_in, t_in, c_in).chunk(2)
        e_t = e_t_uncond + self.unconditional_guidance_scale * (e_t - e_t_uncond)
        return e_t


class CFM_inpaint(CFM):

    @torch.no_grad()
    def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,

                  cond_key=None, return_original_cond=False, bs=None):
        x = batch[k]
        if self.channels > 0:  # use 4d input
            if len(x.shape) == 3:
                x = x[..., None]
            x = rearrange(x, 'b h w c -> b c h w')
        x = x.to(memory_format=torch.contiguous_format).float()

        if bs is not None:
            x = x[:bs]
        x = x.to(self.device)
        encoder_posterior = self.encode_first_stage(x)
        z = self.get_first_stage_encoding(encoder_posterior).detach()

        if self.model.conditioning_key is not None:
            if cond_key is None:
                cond_key = self.cond_stage_key
            if cond_key != self.first_stage_key:
                if cond_key in ['caption', 'coordinates_bbox', 'hybrid_feat']:
                    xc = batch[cond_key]
                elif cond_key == 'class_label':
                    xc = batch
                else:
                    xc = super().get_input(batch, cond_key).to(self.device)
            else:
                xc = x
            ##### Testing #######
            spec = xc['mix_spec'].to(self.device)
            encoder_posterior = self.encode_first_stage(spec)
            z_spec = self.get_first_stage_encoding(encoder_posterior).detach()
            c = {"mix_spec": z_spec, "mix_video_feat": xc['mix_video_feat']}
            ##### Testing #######
            if bs is not None:
                c = {"mix_spec": c["mix_spec"][:bs], "mix_video_feat": c['mix_video_feat'][:bs]}
            # Testing #
            if cond_key == 'masked_image':
                mask = super().get_input(batch, "mask")
                cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106]
                c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106]
            # Testing #
            if self.use_positional_encodings:
                pos_x, pos_y = self.compute_latent_shifts(batch)
                ckey = __conditioning_keys__[self.model.conditioning_key]
                c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}

        else:
            c = None
            xc = None
            if self.use_positional_encodings:
                pos_x, pos_y = self.compute_latent_shifts(batch)
                c = {'pos_x': pos_x, 'pos_y': pos_y}
        out = [z, c]
        if return_first_stage_outputs:
            xrec = self.decode_first_stage(z)
            out.extend([x, xrec])
        if return_original_cond:
            out.append(xc)
        return out


    def apply_model(self, x_noisy, t, cond, return_ids=False):

        if isinstance(cond, dict):
            # hybrid case, cond is exptected to be a dict
            key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
            cond = {key: cond}
        else:
            if not isinstance(cond, list):
                cond = [cond]
            if self.model.conditioning_key == "concat":
                key = "c_concat"
            elif self.model.conditioning_key == "crossattn" or self.model.conditioning_key == "hybrid_inpaint":
                key = "c_crossattn"
            else:
                key = "c_film"
            cond = {key: cond}


        x_recon = self.model(x_noisy, t, **cond)

        if isinstance(x_recon, tuple) and not return_ids:
            return x_recon[0]
        else:
            return x_recon



    @torch.no_grad()
    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,

                   quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=True,

                   plot_diffusion_rows=True, **kwargs):

        log = dict()
        z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
                                           return_first_stage_outputs=True,
                                           force_c_encode=True,
                                           return_original_cond=True,
                                           bs=N) # z is latent,c is condition embedding, xc is condition(caption) list
        N = min(x.shape[0], N)
        n_row = min(x.shape[0], n_row)
        log["inputs"] = x if len(x.shape)==4 else x.unsqueeze(1)
        log["reconstruction"] = xrec if len(xrec.shape)==4 else xrec.unsqueeze(1)
        if self.model.conditioning_key is not None:
            if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image":
                xc = self.cond_stage_model.decode(c)
                log["conditioning"] = xc
            elif self.cond_stage_key == "masked_image":
                log["mask"] = c[:, -1, :, :][:, None, :, :]
                xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :])
                log["conditioning"] = xc
            elif self.cond_stage_key in ["caption"]:
                pass
                # xc = log_txt_as_img((256, 256), batch["caption"])
                # log["conditioning"] = xc
            elif self.cond_stage_key == 'class_label':
                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
                log['conditioning'] = xc
            elif isimage(xc):
                log["conditioning"] = xc

        if plot_diffusion_rows:
            # get diffusion row
            diffusion_row = list()
            z_start = z[:n_row]
            for t in range(self.num_timesteps):
                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
                    t = t.to(self.device).long()
                    noise = torch.randn_like(z_start)
                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
                    diffusion_row.append(self.decode_first_stage(z_noisy))
            if len(diffusion_row[0].shape) == 3:
                diffusion_row = [x.unsqueeze(1) for x in diffusion_row]
            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
            log["diffusion_row"] = diffusion_grid

        if return_keys:
            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
                return log
            else:
                return {key: log[key] for key in return_keys}
        return log