Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,943 Bytes
a84a65c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
from pytorch_memlab import LineProfiler,profile
import torch
import torch.nn as nn
import numpy as np
import pytorch_lightning as pl
from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange, repeat
from contextlib import contextmanager
from functools import partial
from tqdm import tqdm
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps
from torchvision.utils import make_grid
try:
from pytorch_lightning.utilities.distributed import rank_zero_only
except:
from pytorch_lightning.utilities import rank_zero_only # torch2
from torchdyn.core import NeuralODE
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from ldm.models.diffusion.ddpm_audio import LatentDiffusion_audio, disabled_train
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from omegaconf import ListConfig
__conditioning_keys__ = {'concat': 'c_concat',
'crossattn': 'c_crossattn',
'adm': 'y'}
class CFM(LatentDiffusion_audio):
def __init__(self, **kwargs):
super(CFM, self).__init__(**kwargs)
self.sigma_min = 1e-4
def p_losses(self, x_start, cond, t, noise=None):
x1 = x_start
x0 = default(noise, lambda: torch.randn_like(x_start))
ut = x1 - (1 - self.sigma_min) * x0 # 和ut的梯度没关系
t_unsqueeze = t.unsqueeze(1).unsqueeze(1).float() / self.num_timesteps
x_noisy = t_unsqueeze * x1 + (1. - (1 - self.sigma_min) * t_unsqueeze) * x0
model_output = self.apply_model(x_noisy, t, cond)
loss_dict = {}
prefix = 'train' if self.training else 'val'
target = ut
mean_dims = list(range(1,len(target.shape)))
loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims)
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
loss = loss_simple
loss = self.l_simple_weight * loss.mean()
loss_dict.update({f'{prefix}/loss': loss})
return loss, loss_dict
@torch.no_grad()
def sample(self, cond, batch_size=16, timesteps=None, shape=None, x_latent=None, t_start=None, **kwargs):
if shape is None:
if self.channels > 0:
shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
else:
shape = (batch_size, self.mel_dim, self.mel_length)
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
neural_ode = NeuralODE(self.ode_wrapper(cond), solver='euler', sensitivity="adjoint", atol=1e-4, rtol=1e-4)
t_span = torch.linspace(0, 1, 25 if timesteps is None else timesteps)
if t_start is not None:
t_span = t_span[t_start:]
x0 = torch.randn(shape, device=self.device) if x_latent is None else x_latent
eval_points, traj = neural_ode(x0, t_span)
return traj[-1], traj
def ode_wrapper(self, cond):
# self.estimator receives x, mask, mu, t, spk as arguments
return Wrapper(self, cond)
@torch.no_grad()
def sample_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning, batch_size=16, timesteps=None, shape=None, x_latent=None, t_start=None, **kwargs):
if shape is None:
if self.channels > 0:
shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
else:
shape = (batch_size, self.mel_dim, self.mel_length)
if cond is not None:
if isinstance(cond, dict):
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
else:
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
neural_ode = NeuralODE(self.ode_wrapper_cfg(cond, unconditional_guidance_scale, unconditional_conditioning), solver='euler', sensitivity="adjoint", atol=1e-4, rtol=1e-4)
t_span = torch.linspace(0, 1, 25 if timesteps is None else timesteps)
if t_start is not None:
t_span = t_span[t_start:]
x0 = torch.randn(shape, device=self.device) if x_latent is None else x_latent
eval_points, traj = neural_ode(x0, t_span)
return traj[-1], traj
def ode_wrapper_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning):
# self.estimator receives x, mask, mu, t, spk as arguments
return Wrapper_cfg(self, cond, unconditional_guidance_scale, unconditional_conditioning)
@torch.no_grad()
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
# fast, but does not allow for exact reconstruction
# t serves as an index to gather the correct alphas
# if use_original_steps:
# sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
# sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
# else:
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
if noise is None:
noise = torch.randn_like(x0)
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
class Wrapper(nn.Module):
def __init__(self, net, cond):
super(Wrapper, self).__init__()
self.net = net
self.cond = cond
def forward(self, t, x, args):
t = torch.tensor([t * 1000] * x.shape[0], device=t.device).long()
return self.net.apply_model(x, t, self.cond)
class Wrapper_cfg(nn.Module):
def __init__(self, net, cond, unconditional_guidance_scale, unconditional_conditioning):
super(Wrapper_cfg, self).__init__()
self.net = net
self.cond = cond
self.unconditional_conditioning = unconditional_conditioning
self.unconditional_guidance_scale = unconditional_guidance_scale
def forward(self, t, x, args):
x_in = torch.cat([x] * 2)
t = torch.tensor([t * 1000] * x.shape[0], device=t.device).long()
t_in = torch.cat([t] * 2)
c_in = torch.cat([self.unconditional_conditioning, self.cond]) # c/uc shape [b,seq_len=77,dim=1024],c_in shape [b*2,seq_len,dim]
e_t_uncond, e_t = self.net.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + self.unconditional_guidance_scale * (e_t - e_t_uncond)
return e_t
class CFM_inpaint(CFM):
@torch.no_grad()
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
cond_key=None, return_original_cond=False, bs=None):
x = batch[k]
if self.channels > 0: # use 4d input
if len(x.shape) == 3:
x = x[..., None]
x = rearrange(x, 'b h w c -> b c h w')
x = x.to(memory_format=torch.contiguous_format).float()
if bs is not None:
x = x[:bs]
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
if self.model.conditioning_key is not None:
if cond_key is None:
cond_key = self.cond_stage_key
if cond_key != self.first_stage_key:
if cond_key in ['caption', 'coordinates_bbox', 'hybrid_feat']:
xc = batch[cond_key]
elif cond_key == 'class_label':
xc = batch
else:
xc = super().get_input(batch, cond_key).to(self.device)
else:
xc = x
##### Testing #######
spec = xc['mix_spec'].to(self.device)
encoder_posterior = self.encode_first_stage(spec)
z_spec = self.get_first_stage_encoding(encoder_posterior).detach()
c = {"mix_spec": z_spec, "mix_video_feat": xc['mix_video_feat']}
##### Testing #######
if bs is not None:
c = {"mix_spec": c["mix_spec"][:bs], "mix_video_feat": c['mix_video_feat'][:bs]}
# Testing #
if cond_key == 'masked_image':
mask = super().get_input(batch, "mask")
cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106]
c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106]
# Testing #
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
ckey = __conditioning_keys__[self.model.conditioning_key]
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
else:
c = None
xc = None
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
c = {'pos_x': pos_x, 'pos_y': pos_y}
out = [z, c]
if return_first_stage_outputs:
xrec = self.decode_first_stage(z)
out.extend([x, xrec])
if return_original_cond:
out.append(xc)
return out
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
# hybrid case, cond is exptected to be a dict
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
cond = {key: cond}
else:
if not isinstance(cond, list):
cond = [cond]
if self.model.conditioning_key == "concat":
key = "c_concat"
elif self.model.conditioning_key == "crossattn" or self.model.conditioning_key == "hybrid_inpaint":
key = "c_crossattn"
else:
key = "c_film"
cond = {key: cond}
x_recon = self.model(x_noisy, t, **cond)
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
else:
return x_recon
@torch.no_grad()
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=True,
plot_diffusion_rows=True, **kwargs):
log = dict()
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=N) # z is latent,c is condition embedding, xc is condition(caption) list
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
log["inputs"] = x if len(x.shape)==4 else x.unsqueeze(1)
log["reconstruction"] = xrec if len(xrec.shape)==4 else xrec.unsqueeze(1)
if self.model.conditioning_key is not None:
if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image":
xc = self.cond_stage_model.decode(c)
log["conditioning"] = xc
elif self.cond_stage_key == "masked_image":
log["mask"] = c[:, -1, :, :][:, None, :, :]
xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :])
log["conditioning"] = xc
elif self.cond_stage_key in ["caption"]:
pass
# xc = log_txt_as_img((256, 256), batch["caption"])
# log["conditioning"] = xc
elif self.cond_stage_key == 'class_label':
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
log['conditioning'] = xc
elif isimage(xc):
log["conditioning"] = xc
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
if len(diffusion_row[0].shape) == 3:
diffusion_row = [x.unsqueeze(1) for x in diffusion_row]
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
else:
return {key: log[key] for key in return_keys}
return log
|