mtensor pcuenq HF staff commited on
Commit
967ea4d
1 Parent(s): 5f27df1

Text location in screenshots (#12)

Browse files

- Add screenshot text location feature (090950138af99f7877d5f7a6565213c0be493da2)
- Screenshot text location: pad images (35feaa002ab2d0ef4b3c1820b559d85ecb277fa3)


Co-authored-by: Pedro Cuenca <[email protected]>

Files changed (2) hide show
  1. app.py +115 -14
  2. assets/localization_example_1.jpeg +0 -0
app.py CHANGED
@@ -1,9 +1,8 @@
1
  import gradio as gr
 
2
  import torch
3
- from transformers import FuyuForCausalLM, AutoTokenizer
4
- from transformers.models.fuyu.processing_fuyu import FuyuProcessor
5
- from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor
6
  from PIL import Image
 
7
 
8
  model_id = "adept/fuyu-8b"
9
  dtype = torch.bfloat16
@@ -13,9 +12,10 @@ tokenizer = AutoTokenizer.from_pretrained(model_id)
13
  model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
14
  processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
15
 
16
- caption_prompt = "Generate a coco-style caption.\\n"
 
17
 
18
- def resize_to_max(image, max_width=1080, max_height=1080):
19
  width, height = image.size
20
  if width <= max_width and height <= max_height:
21
  return image
@@ -26,23 +26,101 @@ def resize_to_max(image, max_width=1080, max_height=1080):
26
 
27
  return image.resize((width, height), Image.LANCZOS)
28
 
 
 
 
 
 
 
 
 
 
 
29
  def predict(image, prompt):
30
  # image = image.convert('RGB')
31
- image = resize_to_max(image)
32
-
33
  model_inputs = processor(text=prompt, images=[image])
34
  model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
35
 
36
- generation_output = model.generate(**model_inputs, max_new_tokens=40)
37
  prompt_len = model_inputs["input_ids"].shape[-1]
38
  return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True)
39
 
40
- def caption(image):
41
- return predict(image, caption_prompt)
 
 
 
 
42
 
43
  def set_example_image(example: list) -> dict:
44
  return gr.Image.update(value=example[0])
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
 
48
  css = """
@@ -88,21 +166,44 @@ with gr.Blocks(css=css) as demo:
88
 
89
  with gr.Tab("Image Captioning"):
90
  with gr.Row():
91
- captioning_input = gr.Image(label="Upload your Image", type="pil")
 
 
92
  captioning_output = gr.Textbox(label="Output")
93
  captioning_btn = gr.Button("Generate Caption")
94
 
95
  gr.Examples(
96
- [["assets/captioning_example_1.png"], ["assets/captioning_example_2.png"]],
97
- inputs = [captioning_input],
98
  outputs = [captioning_output],
99
  fn=caption,
100
  cache_examples=True,
101
  label='Click on any Examples below to get captioning results quickly 👇'
102
  )
103
 
104
- captioning_btn.click(fn=caption, inputs=captioning_input, outputs=captioning_output)
105
  vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output)
106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
  demo.launch(server_name="0.0.0.0")
 
1
  import gradio as gr
2
+ import re
3
  import torch
 
 
 
4
  from PIL import Image
5
+ from transformers import AutoTokenizer, FuyuForCausalLM, FuyuImageProcessor, FuyuProcessor
6
 
7
  model_id = "adept/fuyu-8b"
8
  dtype = torch.bfloat16
 
12
  model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
13
  processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
14
 
15
+ CAPTION_PROMPT = "Generate a coco-style caption.\n"
16
+ DETAILED_CAPTION_PROMPT = "What is happening in this image?"
17
 
18
+ def resize_to_max(image, max_width=1920, max_height=1080):
19
  width, height = image.size
20
  if width <= max_width and height <= max_height:
21
  return image
 
26
 
27
  return image.resize((width, height), Image.LANCZOS)
28
 
29
+ def pad_to_size(image, canvas_width=1920, canvas_height=1080):
30
+ width, height = image.size
31
+ if width >= canvas_width and height >= canvas_height:
32
+ return image
33
+
34
+ # Paste at (0, 0)
35
+ canvas = Image.new("RGB", (canvas_width, canvas_height))
36
+ canvas.paste(image)
37
+ return canvas
38
+
39
  def predict(image, prompt):
40
  # image = image.convert('RGB')
 
 
41
  model_inputs = processor(text=prompt, images=[image])
42
  model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
43
 
44
+ generation_output = model.generate(**model_inputs, max_new_tokens=50)
45
  prompt_len = model_inputs["input_ids"].shape[-1]
46
  return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True)
47
 
48
+ def caption(image, detailed_captioning):
49
+ if detailed_captioning:
50
+ caption_prompt = DETAILED_CAPTION_PROMPT
51
+ else:
52
+ caption_prompt = CAPTION_PROMPT
53
+ return predict(image, caption_prompt).lstrip()
54
 
55
  def set_example_image(example: list) -> dict:
56
  return gr.Image.update(value=example[0])
57
 
58
+ def scale_factor_to_fit(original_size, target_size=(1920, 1080)):
59
+ width, height = original_size
60
+ max_width, max_height = target_size
61
+ if width <= max_width and height <= max_height:
62
+ return 1.0
63
+ return min(max_width/width, max_height/height)
64
+
65
+ def tokens_to_box(tokens, original_size):
66
+ bbox_start = tokenizer.convert_tokens_to_ids("<0x00>")
67
+ bbox_end = tokenizer.convert_tokens_to_ids("<0x01>")
68
+ try:
69
+ # Assumes a single box
70
+ bbox_start_pos = (tokens == bbox_start).nonzero(as_tuple=True)[0].item()
71
+ bbox_end_pos = (tokens == bbox_end).nonzero(as_tuple=True)[0].item()
72
+
73
+ if bbox_end_pos != bbox_start_pos + 5:
74
+ return tokens
75
+
76
+ # Retrieve transformed coordinates from tokens
77
+ coords = tokenizer.convert_ids_to_tokens(tokens[bbox_start_pos+1:bbox_end_pos])
78
+
79
+ # Scale back to original image size and multiply by 2
80
+ scale = scale_factor_to_fit(original_size)
81
+ top, left, bottom, right = [2 * int(float(c)/scale) for c in coords]
82
+
83
+ # Replace the IDs so they get detokenized right
84
+ replacement = f" <box>{top}, {left}, {bottom}, {right}</box>"
85
+ replacement = tokenizer.tokenize(replacement)[1:]
86
+ replacement = tokenizer.convert_tokens_to_ids(replacement)
87
+ replacement = torch.tensor(replacement).to(tokens)
88
+
89
+ tokens = torch.cat([tokens[:bbox_start_pos], replacement, tokens[bbox_end_pos+1:]], 0)
90
+ return tokens
91
+ except:
92
+ gr.Error("Can't convert tokens.")
93
+ return tokens
94
+
95
+ def coords_from_response(response):
96
+ # y1, x1, y2, x2
97
+ pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>"
98
+
99
+ match = re.search(pattern, response)
100
+ if match:
101
+ # Unpack and change order
102
+ y1, x1, y2, x2 = [int(coord) for coord in match.groups()]
103
+ return (x1, y1, x2, y2)
104
+ else:
105
+ gr.Error("The string is malformed or does not match the expected pattern.")
106
+
107
+ def localize(image, query):
108
+ prompt = f"When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\n{query}"
109
+
110
+ # Downscale and/or pad to 1920x1080
111
+ padded = resize_to_max(image)
112
+ padded = pad_to_size(padded)
113
+
114
+ model_inputs = processor(text=prompt, images=[padded])
115
+ model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
116
+
117
+ generation_output = model.generate(**model_inputs, max_new_tokens=40)
118
+ prompt_len = model_inputs["input_ids"].shape[-1]
119
+ tokens = generation_output[0][prompt_len:]
120
+ tokens = tokens_to_box(tokens, image.size)
121
+ decoded = tokenizer.decode(tokens, skip_special_tokens=True)
122
+ coords = coords_from_response(decoded)
123
+ return image, [(coords, f"Location of \"{query}\"")]
124
 
125
 
126
  css = """
 
166
 
167
  with gr.Tab("Image Captioning"):
168
  with gr.Row():
169
+ with gr.Column():
170
+ captioning_input = gr.Image(label="Upload your Image", type="pil")
171
+ detailed_captioning_checkbox = gr.Checkbox(label="Enable detailed captioning")
172
  captioning_output = gr.Textbox(label="Output")
173
  captioning_btn = gr.Button("Generate Caption")
174
 
175
  gr.Examples(
176
+ [["assets/captioning_example_1.png", False], ["assets/captioning_example_2.png", True]],
177
+ inputs = [captioning_input, detailed_captioning_checkbox],
178
  outputs = [captioning_output],
179
  fn=caption,
180
  cache_examples=True,
181
  label='Click on any Examples below to get captioning results quickly 👇'
182
  )
183
 
184
+ captioning_btn.click(fn=caption, inputs=[captioning_input, detailed_captioning_checkbox], outputs=captioning_output)
185
  vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output)
186
 
187
+ with gr.Tab("Find Text in Screenshots"):
188
+ with gr.Row():
189
+ with gr.Column():
190
+ localization_input = gr.Image(label="Upload your Image", type="pil")
191
+ query_input = gr.Textbox(label="Text to find")
192
+ localization_btn = gr.Button("Locate Text")
193
+ with gr.Column():
194
+ with gr.Row(height=800):
195
+ localization_output = gr.AnnotatedImage(label="Text Position")
196
+
197
+ gr.Examples(
198
+ [["assets/localization_example_1.jpeg", "Share your repair"],
199
+ ["assets/screen2words_ui_example.png", "statistics"]],
200
+ inputs = [localization_input, query_input],
201
+ outputs = [localization_output],
202
+ fn=localize,
203
+ cache_examples=True,
204
+ label='Click on any Examples below to get localization results quickly 👇'
205
+ )
206
+
207
+ localization_btn.click(fn=localize, inputs=[localization_input, query_input], outputs=localization_output)
208
 
209
  demo.launch(server_name="0.0.0.0")
assets/localization_example_1.jpeg ADDED