1aurent commited on
Commit
432150c
1 Parent(s): 001c97f
Files changed (3) hide show
  1. README.md +2 -2
  2. app.py +83 -0
  3. requirements.txt +7 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: Cogvlm Captionner
3
- emoji: 🦀
4
  colorFrom: gray
5
  colorTo: red
6
  sdk: gradio
 
1
  ---
2
+ title: CogVLMv1 Captionner
3
+ emoji: ⚙️
4
  colorFrom: gray
5
  colorTo: red
6
  sdk: gradio
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # type: ignore
2
+ from typing import Any
3
+ import gradio as gr
4
+ import spaces
5
+ import torch
6
+ from PIL import Image
7
+ from transformers import AutoModelForCausalLM, LlamaTokenizer
8
+
9
+
10
+ DEFAULT_PARAMS = {
11
+ "do_sample": False,
12
+ "max_new_tokens": 256,
13
+ }
14
+ DEFAULT_QUERY = (
15
+ "Provide a factual description of this image in up to two paragraphs. "
16
+ "Include details on objects, background, scenery, interactions, gestures, poses, and any visible text content. "
17
+ "Specify the number of repeated objects. "
18
+ "Describe the dominant colors, color contrasts, textures, and materials. "
19
+ "Mention the composition, including the arrangement of elements and focus points. "
20
+ "Note the camera angle or perspective, and provide any identifiable contextual information. "
21
+ "Include details on the style, lighting, and shadows. "
22
+ "Avoid subjective interpretations or speculation."
23
+ )
24
+
25
+ DTYPE = torch.bfloat16
26
+ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
27
+
28
+ tokenizer = LlamaTokenizer.from_pretrained(
29
+ pretrained_model_name_or_path="lmsys/vicuna-7b-v1.5",
30
+ )
31
+ model = AutoModelForCausalLM.from_pretrained(
32
+ pretrained_model_name_or_path="THUDM/cogvlm-chat-hf",
33
+ torch_dtype=DTYPE,
34
+ trust_remote_code=True,
35
+ low_cpu_mem_usage=True,
36
+ )
37
+
38
+ model = model.to(device=DEVICE)
39
+
40
+ @spaces.GPU
41
+ @torch.no_grad()
42
+ def generate_caption(
43
+ image: Image.Image,
44
+ query: str = DEFAULT_QUERY,
45
+ params: dict[str, Any] = DEFAULT_PARAMS,
46
+ ) -> str:
47
+ inputs = model.build_conversation_input_ids(
48
+ tokenizer=tokenizer,
49
+ query=query,
50
+ history=[],
51
+ images=[image],
52
+ )
53
+ inputs = {
54
+ "input_ids": inputs["input_ids"].unsqueeze(0).to(device=DEVICE),
55
+ "token_type_ids": inputs["token_type_ids"].unsqueeze(0).to(device=DEVICE),
56
+ "attention_mask": inputs["attention_mask"].unsqueeze(0).to(device=DEVICE),
57
+ "images": [[inputs["images"][0].to(device=DEVICE, dtype=DTYPE)]],
58
+ }
59
+
60
+ outputs = model.generate(**inputs, **params)
61
+ outputs = outputs[:, inputs["input_ids"].shape[1] :]
62
+ result = tokenizer.decode(outputs[0])
63
+
64
+ result = result.replace("This image showcases", "").lstrip()
65
+ return result
66
+
67
+
68
+ with gr.Blocks() as demo:
69
+ with gr.Row():
70
+ with gr.Column():
71
+ input_image = gr.Image(type="pil")
72
+ input_query = gr.Textbox(lines=5, label="Prompt", value=DEFAULT_QUERY)
73
+ run_button = gr.Button(value="Generate Caption")
74
+ with gr.Column():
75
+ output_caption = gr.Textbox(label="Generated Caption", show_copy_button=True)
76
+
77
+ run_button.click(
78
+ fn=generate_caption,
79
+ inputs=[input_image, input_query],
80
+ outputs=output_caption,
81
+ )
82
+
83
+ demo.launch(share=False)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ transformers==4.41.2
2
+ xformers==0.0.27
3
+ sentencepiece==0.2.0
4
+ bitsandbytes==0.43.1
5
+ einops==0.8.0
6
+ torchvision==0.18.1
7
+ accelerate==0.31.0