Shokoufehhh commited on
Commit
e3e6c64
·
verified ·
1 Parent(s): 3d9f50f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -5
README.md CHANGED
@@ -35,8 +35,9 @@ This repository contains the official PyTorch implementations for the papers:
35
  - Simon Welker, Julius Richter, Timo Gerkmann, [*"Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain"*](https://www.isca-speech.org/archive/interspeech_2022/welker22_interspeech.html), ISCA Interspeech, Incheon, Korea, Sept. 2022. [[bibtex]](#citations--references)
36
  - Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, Timo Gerkmann, [*"Speech Enhancement and Dereverberation with Diffusion-Based Generative Models"*](https://ieeexplore.ieee.org/abstract/document/10149431), IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2351-2364, 2023. [[bibtex]](#citations--references)
37
  - Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinji Watanabe, Alexander Richard, Timo Gerkmann, [*"EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation"*](https://arxiv.org/abs/2406.06185), ISCA Interspecch, Kos, Greece, Sept. 2024. [[bibtex]](#citations--references)
 
38
 
39
- Audio examples and supplementary materials are available on our [SGMSE project page](https://www.inf.uni-hamburg.de/en/inst/ab/sp/publications/sgmse) and [EARS project page](https://sp-uhh.github.io/ears_dataset/).
40
 
41
  ## Key Files
42
 
@@ -69,7 +70,6 @@ Please also check out our follow-up work with code available:
69
  - Your logs will be stored as local CSVLogger logs in `lightning_logs/`.
70
 
71
  ## Pretrained checkpoints
72
-
73
  - For the speech enhancement task, we offer pretrained checkpoints for models that have been trained on the VoiceBank-DEMAND and WSJ0-CHiME3 datasets, as described in our journal paper [2]. You can download them [here](https://drive.google.com/drive/folders/1CSnkhUSoiv3RG0xg7WEcVapyLuwDaLbe?usp=sharing).
74
  - SGMSE+ trained on VoiceBank-DEMAND: `gdown 1_H3EXvhcYBhOZ9QNUcD5VZHc6ktrRbwQ`
75
  - SGMSE+ trained on WSJ0-CHiME3: `gdown 16K4DUdpmLhDNC7pJhBBc08pkSIn_yMPi`
@@ -79,6 +79,15 @@ Please also check out our follow-up work with code available:
79
  - For 48 kHz models [3], we offer pretrained checkpoints for speech enhancement, trained on the EARS-WHAM dataset, and for dereverberation, trained on the EARS-Reverb dataset. You can download them [here](https://drive.google.com/drive/folders/1Tn6pVwjxUAy1DJ8167JCg3enuSi0hiw5?usp=sharing).
80
  - SGMSE+ trained on EARS-WHAM: `gdown 1t_DLLk8iPH6nj8M5wGeOP3jFPaz3i7K5`
81
  - SGMSE+ trained on EARS-Reverb: `gdown 1PunXuLbuyGkknQCn_y-RCV2dTZBhyE3V`
 
 
 
 
 
 
 
 
 
82
 
83
  Usage:
84
  - For resuming training, you can use the `--ckpt` option of `train.py`.
@@ -97,11 +106,13 @@ where `your_base_dir` should be a path to a folder containing subdirectories `tr
97
  To see all available training options, run `python train.py --help`. Note that the available options for the SDE and the backbone network change depending on which SDE and backbone you use. These can be set through the `--sde` and `--backbone` options.
98
 
99
  **Note:**
100
- - Our journal preprint [2] uses `--backbone ncsnpp`.
101
  - For the 48 kHz model [3], use `--backbone ncsnpp_48k --n_fft 1534 --hop_length 384 --spec_factor 0.065 --spec_abs_exponent 0.667 --sigma-min 0.1 --sigma-max 1.0 --theta 2.0`
102
  - Our Interspeech paper [1] uses `--backbone dcunet`. You need to pass `--n_fft 512` to make it work.
103
  - Also note that the default parameters for the spectrogram transformation in this repository are slightly different from the ones listed in the first (Interspeech) paper (`--spec_factor 0.15` rather than `--spec_factor 0.333`), but we've found the value in this repository to generally perform better for both models [1] and [2].
104
-
 
 
105
  ## Evaluation
106
 
107
  To evaluate on a test set, run
@@ -152,9 +163,19 @@ We kindly ask you to cite our papers in your publication when using any of our r
152
  year={2024}
153
  }
154
  ```
 
 
 
 
 
 
 
 
155
 
156
  >[1] Simon Welker, Julius Richter, Timo Gerkmann. "Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain", ISCA Interspeech, Incheon, Korea, Sep. 2022.
157
  >
158
  >[2] Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, Timo Gerkmann. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2351-2364, 2023.
159
  >
160
- >[3] Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinji Watanabe, Alexander Richard, Timo Gerkmann. "EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation", ISCA Interspeech, Kos, Greece, 2024.
 
 
 
35
  - Simon Welker, Julius Richter, Timo Gerkmann, [*"Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain"*](https://www.isca-speech.org/archive/interspeech_2022/welker22_interspeech.html), ISCA Interspeech, Incheon, Korea, Sept. 2022. [[bibtex]](#citations--references)
36
  - Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, Timo Gerkmann, [*"Speech Enhancement and Dereverberation with Diffusion-Based Generative Models"*](https://ieeexplore.ieee.org/abstract/document/10149431), IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2351-2364, 2023. [[bibtex]](#citations--references)
37
  - Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinji Watanabe, Alexander Richard, Timo Gerkmann, [*"EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation"*](https://arxiv.org/abs/2406.06185), ISCA Interspecch, Kos, Greece, Sept. 2024. [[bibtex]](#citations--references)
38
+ - Julius Richter, Danilo de Oliveira, Timo Gerkmann, [*"Investigating Training Objectives for Generative Speech Enhancement"*](https://arxiv.org/abs/2409.10753) (preprint), 2024. [[bibtex]](#citations--references)
39
 
40
+ Audio examples and supplementary materials are available on our [SGMSE project page](https://www.inf.uni-hamburg.de/en/inst/ab/sp/publications/sgmse), [EARS project page](https://sp-uhh.github.io/ears_dataset/), and [Investigating training objectives project page](https://sp-uhh.github.io/gen-se/).
41
 
42
  ## Key Files
43
 
 
70
  - Your logs will be stored as local CSVLogger logs in `lightning_logs/`.
71
 
72
  ## Pretrained checkpoints
 
73
  - For the speech enhancement task, we offer pretrained checkpoints for models that have been trained on the VoiceBank-DEMAND and WSJ0-CHiME3 datasets, as described in our journal paper [2]. You can download them [here](https://drive.google.com/drive/folders/1CSnkhUSoiv3RG0xg7WEcVapyLuwDaLbe?usp=sharing).
74
  - SGMSE+ trained on VoiceBank-DEMAND: `gdown 1_H3EXvhcYBhOZ9QNUcD5VZHc6ktrRbwQ`
75
  - SGMSE+ trained on WSJ0-CHiME3: `gdown 16K4DUdpmLhDNC7pJhBBc08pkSIn_yMPi`
 
79
  - For 48 kHz models [3], we offer pretrained checkpoints for speech enhancement, trained on the EARS-WHAM dataset, and for dereverberation, trained on the EARS-Reverb dataset. You can download them [here](https://drive.google.com/drive/folders/1Tn6pVwjxUAy1DJ8167JCg3enuSi0hiw5?usp=sharing).
80
  - SGMSE+ trained on EARS-WHAM: `gdown 1t_DLLk8iPH6nj8M5wGeOP3jFPaz3i7K5`
81
  - SGMSE+ trained on EARS-Reverb: `gdown 1PunXuLbuyGkknQCn_y-RCV2dTZBhyE3V`
82
+ - For the investigating training objectives checkpoints [4], we offer the pretrained checkpoints [here](https://www2.informatik.uni-hamburg.de/sp/audio/publications/icassp2025_gense/checkpoints/)
83
+ - M1: `wget https://www2.informatik.uni-hamburg.de/sp/audio/publications/icassp2025_gense/checkpoints/m1.ckpt`
84
+ - M2: `wget https://www2.informatik.uni-hamburg.de/sp/audio/publications/icassp2025_gense/checkpoints/m2.ckpt`
85
+ - M3: `wget https://www2.informatik.uni-hamburg.de/sp/audio/publications/icassp2025_gense/checkpoints/m3.ckpt`
86
+ - M4: `wget https://www2.informatik.uni-hamburg.de/sp/audio/publications/icassp2025_gense/checkpoints/m4.ckpt`
87
+ - M5: `wget https://www2.informatik.uni-hamburg.de/sp/audio/publications/icassp2025_gense/checkpoints/m5.ckpt`
88
+ - M6: `wget https://www2.informatik.uni-hamburg.de/sp/audio/publications/icassp2025_gense/checkpoints/m6.ckpt`
89
+ - M7: `wget https://www2.informatik.uni-hamburg.de/sp/audio/publications/icassp2025_gense/checkpoints/m7.ckpt`
90
+ - M8: `wget https://www2.informatik.uni-hamburg.de/sp/audio/publications/icassp2025_gense/checkpoints/m8.ckpt`
91
 
92
  Usage:
93
  - For resuming training, you can use the `--ckpt` option of `train.py`.
 
106
  To see all available training options, run `python train.py --help`. Note that the available options for the SDE and the backbone network change depending on which SDE and backbone you use. These can be set through the `--sde` and `--backbone` options.
107
 
108
  **Note:**
109
+ - Our journal [2] uses `--backbone ncsnpp`.
110
  - For the 48 kHz model [3], use `--backbone ncsnpp_48k --n_fft 1534 --hop_length 384 --spec_factor 0.065 --spec_abs_exponent 0.667 --sigma-min 0.1 --sigma-max 1.0 --theta 2.0`
111
  - Our Interspeech paper [1] uses `--backbone dcunet`. You need to pass `--n_fft 512` to make it work.
112
  - Also note that the default parameters for the spectrogram transformation in this repository are slightly different from the ones listed in the first (Interspeech) paper (`--spec_factor 0.15` rather than `--spec_factor 0.333`), but we've found the value in this repository to generally perform better for both models [1] and [2].
113
+ - For the investigating training objectives paper [4], we use `--backbone ncsnpp_v2`.
114
+ - For the Schrödinger bridge model [4], we use e.g. `--backbone ncsnpp_v2 --sde sbve --loss_type data_prediction --pesq_weight 5e-4`.
115
+
116
  ## Evaluation
117
 
118
  To evaluate on a test set, run
 
163
  year={2024}
164
  }
165
  ```
166
+ ```bib
167
+ @article{richter2024investigating,
168
+ title={Investigating Training Objectives for Generative Speech Enhancement},
169
+ author={Richter, Julius and de Oliveira, Danilo and Gerkmann, Timo},
170
+ journal={arXiv preprint arXiv:2409.10753},
171
+ year={2024}
172
+ }
173
+ ```
174
 
175
  >[1] Simon Welker, Julius Richter, Timo Gerkmann. "Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain", ISCA Interspeech, Incheon, Korea, Sep. 2022.
176
  >
177
  >[2] Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, Timo Gerkmann. "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models", IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2351-2364, 2023.
178
  >
179
+ >[3] Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinji Watanabe, Alexander Richard, Timo Gerkmann. "EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation", ISCA Interspeech, Kos, Greece, 2024.
180
+ >
181
+ >[4] Julius Richter, Danilo de Oliveira, Timo Gerkmann. "Investigating Training Objectives for Generative Speech Enhancement", arXiv preprint arXiv:2409.10753, 2024.