Shokoufeh
commited on
Commit
·
2aa6704
1
Parent(s):
a2cde0e
Add custom pipeline file
Browse files- custom_pipeline.py +82 -0
custom_pipeline.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
from transformers import Pipeline
|
4 |
+
from librosa import resample
|
5 |
+
from soundfile import write
|
6 |
+
from sgmse.model import ScoreModel
|
7 |
+
from sgmse.util.other import pad_spec
|
8 |
+
|
9 |
+
class CustomSpeechEnhancementPipeline(Pipeline):
|
10 |
+
def __init__(self, model, target_sr=16000, pad_mode="zero_pad", args=None):
|
11 |
+
"""
|
12 |
+
Custom pipeline for speech enhancement using ScoreModel.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
model: The speech enhancement model loaded from a checkpoint (ScoreModel).
|
16 |
+
target_sr: Target sample rate for the input audio (default is 16 kHz).
|
17 |
+
pad_mode: Padding mode for spectrogram (default is "zero_pad").
|
18 |
+
args: Parsed arguments (device, corrector, corrector_steps, snr, etc.).
|
19 |
+
"""
|
20 |
+
super().__init__(model=model)
|
21 |
+
self.target_sr = target_sr
|
22 |
+
self.pad_mode = pad_mode
|
23 |
+
self.args = args
|
24 |
+
|
25 |
+
def preprocess(self, audio_path):
|
26 |
+
# Load the audio file
|
27 |
+
y, sr = torchaudio.load(audio_path)
|
28 |
+
|
29 |
+
# Resample if necessary
|
30 |
+
if sr != self.target_sr:
|
31 |
+
y = torch.tensor(resample(y.numpy(), orig_sr=sr, target_sr=self.target_sr))
|
32 |
+
|
33 |
+
# Normalize the audio
|
34 |
+
norm_factor = y.abs().max()
|
35 |
+
y = y / norm_factor
|
36 |
+
|
37 |
+
# Prepare the input for the model by transforming to the frequency domain
|
38 |
+
Y = torch.unsqueeze(self.model._forward_transform(self.model._stft(y.to(self.args.device))), 0)
|
39 |
+
Y = pad_spec(Y, mode=self.pad_mode)
|
40 |
+
|
41 |
+
return Y, norm_factor, y.size(1) # Return input spec, normalization factor, and original length
|
42 |
+
|
43 |
+
def _forward(self, model_inputs):
|
44 |
+
Y, norm_factor, T_orig = model_inputs
|
45 |
+
|
46 |
+
# Perform reverse sampling using the model's PC sampler
|
47 |
+
sampler = self.model.get_pc_sampler(
|
48 |
+
'reverse_diffusion',
|
49 |
+
self.args.corrector,
|
50 |
+
Y.to(self.args.device),
|
51 |
+
N=self.args.N,
|
52 |
+
corrector_steps=self.args.corrector_steps,
|
53 |
+
snr=self.args.snr
|
54 |
+
)
|
55 |
+
|
56 |
+
# Get the enhanced speech sample
|
57 |
+
sample, _ = sampler()
|
58 |
+
|
59 |
+
# Convert back to time domain
|
60 |
+
x_hat = self.model.to_audio(sample.squeeze(), T_orig)
|
61 |
+
|
62 |
+
# Renormalize the audio
|
63 |
+
x_hat = x_hat * norm_factor
|
64 |
+
|
65 |
+
return x_hat
|
66 |
+
|
67 |
+
def postprocess(self, model_outputs):
|
68 |
+
# Convert the enhanced output back to NumPy for further processing or saving
|
69 |
+
return model_outputs.cpu().numpy()
|
70 |
+
|
71 |
+
def pad_spec(self, Y):
|
72 |
+
"""
|
73 |
+
Apply padding to the spectrogram as per the model's required padding mode.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
Y: Input spectrogram tensor.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
Padded spectrogram.
|
80 |
+
"""
|
81 |
+
# Implement padding as per the provided mode
|
82 |
+
return torch.nn.functional.pad(Y, (0, 0, 0, 1), mode=self.pad_mode)
|