--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: f404ad90-a578-4849-9a7c-c0a4c00d37f5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct bf16: auto dataset_prepared_path: null datasets: - data_files: - 8eaf7cf861deb379_train_data.json ds_type: json format: custom path: /workspace/input_data/8eaf7cf861deb379_train_data.json type: field_input: text field_instruction: task_name field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: null fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sn56t0/f404ad90-a578-4849-9a7c-c0a4c00d37f5 learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 2 mlflow_experiment_name: /tmp/8eaf7cf861deb379_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: ./outputs/lora-out/taopanda-4_44772382-6fc9-4770-859d-7d36d2cea513 pad_to_sequence_len: null resume_from_checkpoint: null sample_packing: false saves_per_epoch: 1 seed: 3849342454 sequence_len: 2048 shuffle: true special_tokens: null strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_log_model: null wandb_mode: disabled wandb_name: null wandb_project: god wandb_run: v8sh wandb_runid: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# f404ad90-a578-4849-9a7c-c0a4c00d37f5 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co./unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 3849342454 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.5005 | 0.0016 | 1 | nan | | 3.4486 | 0.9992 | 630 | nan | | 4.2775 | 1.9984 | 1260 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1