--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 385d0209-5a48-4c55-afeb-fa0021266d80 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: microsoft/Phi-3-mini-4k-instruct bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 11bb3328a39885eb_train_data.json ds_type: json format: custom path: /workspace/input_data/11bb3328a39885eb_train_data.json type: field_instruction: query field_output: atom format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 20 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: sn56t0/385d0209-5a48-4c55-afeb-fa0021266d80 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/11bb3328a39885eb_train_data.json model_type: AutoModelForCausalLM num_epochs: 5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 20 saves_per_epoch: 0 seed: 754886094 sequence_len: 512 shuffle: true strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: null wandb_project: god wandb_run: 38ik wandb_runid: null warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ```

# 385d0209-5a48-4c55-afeb-fa0021266d80 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co./microsoft/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 754886094 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - total_eval_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 16 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0075 | 1 | 1.6674 | | No log | 0.1509 | 20 | 0.9842 | | No log | 0.3019 | 40 | 0.7868 | | No log | 0.4528 | 60 | 0.7475 | | No log | 0.6038 | 80 | 0.7317 | | 1.7686 | 0.7547 | 100 | 0.7231 | | 1.7686 | 0.9057 | 120 | 0.7148 | | 1.7686 | 1.0566 | 140 | 0.7108 | | 1.7686 | 1.2075 | 160 | 0.7068 | | 1.7686 | 1.3585 | 180 | 0.7043 | | 1.3649 | 1.5094 | 200 | 0.7011 | | 1.3649 | 1.6604 | 220 | 0.6980 | | 1.3649 | 1.8113 | 240 | 0.6959 | | 1.3649 | 1.9623 | 260 | 0.6925 | | 1.3649 | 2.1132 | 280 | 0.6920 | | 1.3269 | 2.2642 | 300 | 0.6920 | | 1.3269 | 2.4151 | 320 | 0.6893 | | 1.3269 | 2.5660 | 340 | 0.6882 | | 1.3269 | 2.7170 | 360 | 0.6864 | | 1.3269 | 2.8679 | 380 | 0.6846 | | 1.2806 | 3.0189 | 400 | 0.6831 | | 1.2806 | 3.1698 | 420 | 0.6832 | | 1.2806 | 3.3208 | 440 | 0.6837 | | 1.2806 | 3.4717 | 460 | 0.6820 | | 1.2806 | 3.6226 | 480 | 0.6815 | | 1.2517 | 3.7736 | 500 | 0.6806 | | 1.2517 | 3.9245 | 520 | 0.6802 | | 1.2517 | 4.0755 | 540 | 0.6800 | | 1.2517 | 4.2264 | 560 | 0.6797 | | 1.2517 | 4.3774 | 580 | 0.6792 | | 1.2416 | 4.5283 | 600 | 0.6792 | | 1.2416 | 4.6792 | 620 | 0.6789 | | 1.2416 | 4.8302 | 640 | 0.6789 | | 1.2416 | 4.9811 | 660 | 0.6789 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1