sigridjineth
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -20,14 +20,17 @@ Compared to other ColBERT-based models tested (`colbert-ir/colbertv2.0` and `ans
|
|
20 |
## Model Comparison
|
21 |
The [AutoRAG Benchmark](https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark) serves as both the evaluation dataset and the toolkit for reporting these metrics.
|
22 |
|
23 |
-
| Model
|
24 |
-
|
25 |
-
| colbert-ir/colbertv2.0
|
26 |
-
|
|
27 |
-
|
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
## Usage
|
33 |
|
@@ -41,7 +44,7 @@ pip install --upgrade colbert-ai
|
|
41 |
pip install --upgrade rerankers[transformers]
|
42 |
```
|
43 |
|
44 |
-
### Using
|
45 |
|
46 |
```python
|
47 |
from rerankers import Reranker
|
@@ -52,7 +55,7 @@ query = '์ผ๊ณผ ์นํ๋ก์ ํ๋ฐฉ๋ถ๋ช
์ ๋๊ฐ ๊ฐ๋
ํ๋์?'
|
|
52 |
ranked_docs = ranker.rank(query=query, docs=docs)
|
53 |
```
|
54 |
|
55 |
-
### Using
|
56 |
|
57 |
```python
|
58 |
from ragatouille import RAGPretrainedModel
|
@@ -117,5 +120,4 @@ If you use this model or other JaColBERTv2.5-based models, please cite:
|
|
117 |
journal={arXiv preprint arXiv:2407.20750},
|
118 |
year={2024}
|
119 |
}
|
120 |
-
```
|
121 |
```
|
|
|
20 |
## Model Comparison
|
21 |
The [AutoRAG Benchmark](https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark) serves as both the evaluation dataset and the toolkit for reporting these metrics.
|
22 |
|
23 |
+
| Model | top_k | F1 | MRR | NDCG | Notes |
|
24 |
+
|-------------------------------------------|-------|--------|---------|---------|---------------------------------------------------------------------------------|
|
25 |
+
| colbert-ir/colbertv2.0 | 1 | 0.2456 | 0.2456 | 0.2456 | Low initial performance. |
|
26 |
+
| | 3 | 0.3596 | 0.4459 | 0.5158 | Shows notable improvement at top_k=3. |
|
27 |
+
| | 5 | 0.3596 | 0.4459 | 0.5158 | Similar to top_k=3, no further MRR/NDCG gains. |
|
28 |
+
| answerai/answerai-colbert-small-v1 | 1 | 0.2193 | 0.2193 | 0.2193 | Lower performance at top_k=1. |
|
29 |
+
| | 3 | 0.3596 | 0.4240 | 0.4992 | Improved performance at top_k=3, but MRR/NDCG still behind colbertv2.0. |
|
30 |
+
| | 5 | 0.3596 | 0.4240 | 0.4992 | Same as top_k=3, no additional metrics gain. |
|
31 |
+
| sigridjineth/colbert-small-korean-20241212| 1 | 0.3772 | 0.3772 | 0.3772 | Highest F1 at top_k=1 among the three models. |
|
32 |
+
| | 3 | 0.3596 | **0.5278** | **0.5769** | Slight F1 drop vs. top_k=1, but MRR/NDCG significantly surpass both competitors. |
|
33 |
+
| | 5 | 0.3596 | 0.5278 | 0.5769 | Same as top_k=3, maintaining high MRR/NDCG. |
|
34 |
|
35 |
## Usage
|
36 |
|
|
|
44 |
pip install --upgrade rerankers[transformers]
|
45 |
```
|
46 |
|
47 |
+
### Using rerankers
|
48 |
|
49 |
```python
|
50 |
from rerankers import Reranker
|
|
|
55 |
ranked_docs = ranker.rank(query=query, docs=docs)
|
56 |
```
|
57 |
|
58 |
+
### Using AGatouille
|
59 |
|
60 |
```python
|
61 |
from ragatouille import RAGPretrainedModel
|
|
|
120 |
journal={arXiv preprint arXiv:2407.20750},
|
121 |
year={2024}
|
122 |
}
|
|
|
123 |
```
|