sigridjineth commited on
Commit
a88f03e
ยท
verified ยท
1 Parent(s): 16a963a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -11
README.md CHANGED
@@ -20,14 +20,17 @@ Compared to other ColBERT-based models tested (`colbert-ir/colbertv2.0` and `ans
20
  ## Model Comparison
21
  The [AutoRAG Benchmark](https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark) serves as both the evaluation dataset and the toolkit for reporting these metrics.
22
 
23
- | Model | F1 | Recall | Precision | MAP | MRR | NDCG | Is Best at top_k=3? |
24
- |------------------------------------------|--------|--------|-----------|--------|---------|---------|--------------------|
25
- | colbert-ir/colbertv2.0 | 0.3596 | 0.7193 | 0.2398 | 0.2398 | 0.4459 | 0.5158 | False |
26
- | answerai/answerai-colbert-small-v1 | 0.3596 | 0.7193 | 0.2398 | 0.2398 | 0.4240 | 0.4992 | False |
27
- | sigridjineth/colbert-small-korean-20241212 | 0.3596 | 0.7193 | 0.2398 | 0.2398 | **0.5278** | **0.5769** | **True** |
28
-
29
- **Key Insight:**
30
- - While all three models reach a similar F1 score at `top_k=3`, the `sigridjineth/colbert-small-korean-20241212` model achieves substantially higher MRR and NDCG, indicating better quality rankings and relevance ordering.
 
 
 
31
 
32
  ## Usage
33
 
@@ -41,7 +44,7 @@ pip install --upgrade colbert-ai
41
  pip install --upgrade rerankers[transformers]
42
  ```
43
 
44
- ### Using `rerankers`
45
 
46
  ```python
47
  from rerankers import Reranker
@@ -52,7 +55,7 @@ query = '์„ผ๊ณผ ์น˜ํžˆ๋กœ์˜ ํ–‰๋ฐฉ๋ถˆ๋ช…์„ ๋ˆ„๊ฐ€ ๊ฐ๋…ํ–ˆ๋‚˜์š”?'
52
  ranked_docs = ranker.rank(query=query, docs=docs)
53
  ```
54
 
55
- ### Using `RAGatouille`
56
 
57
  ```python
58
  from ragatouille import RAGPretrainedModel
@@ -117,5 +120,4 @@ If you use this model or other JaColBERTv2.5-based models, please cite:
117
  journal={arXiv preprint arXiv:2407.20750},
118
  year={2024}
119
  }
120
- ```
121
  ```
 
20
  ## Model Comparison
21
  The [AutoRAG Benchmark](https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark) serves as both the evaluation dataset and the toolkit for reporting these metrics.
22
 
23
+ | Model | top_k | F1 | MRR | NDCG | Notes |
24
+ |-------------------------------------------|-------|--------|---------|---------|---------------------------------------------------------------------------------|
25
+ | colbert-ir/colbertv2.0 | 1 | 0.2456 | 0.2456 | 0.2456 | Low initial performance. |
26
+ | | 3 | 0.3596 | 0.4459 | 0.5158 | Shows notable improvement at top_k=3. |
27
+ | | 5 | 0.3596 | 0.4459 | 0.5158 | Similar to top_k=3, no further MRR/NDCG gains. |
28
+ | answerai/answerai-colbert-small-v1 | 1 | 0.2193 | 0.2193 | 0.2193 | Lower performance at top_k=1. |
29
+ | | 3 | 0.3596 | 0.4240 | 0.4992 | Improved performance at top_k=3, but MRR/NDCG still behind colbertv2.0. |
30
+ | | 5 | 0.3596 | 0.4240 | 0.4992 | Same as top_k=3, no additional metrics gain. |
31
+ | sigridjineth/colbert-small-korean-20241212| 1 | 0.3772 | 0.3772 | 0.3772 | Highest F1 at top_k=1 among the three models. |
32
+ | | 3 | 0.3596 | **0.5278** | **0.5769** | Slight F1 drop vs. top_k=1, but MRR/NDCG significantly surpass both competitors. |
33
+ | | 5 | 0.3596 | 0.5278 | 0.5769 | Same as top_k=3, maintaining high MRR/NDCG. |
34
 
35
  ## Usage
36
 
 
44
  pip install --upgrade rerankers[transformers]
45
  ```
46
 
47
+ ### Using rerankers
48
 
49
  ```python
50
  from rerankers import Reranker
 
55
  ranked_docs = ranker.rank(query=query, docs=docs)
56
  ```
57
 
58
+ ### Using AGatouille
59
 
60
  ```python
61
  from ragatouille import RAGPretrainedModel
 
120
  journal={arXiv preprint arXiv:2407.20750},
121
  year={2024}
122
  }
 
123
  ```