shibing624
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -137,7 +137,7 @@ In short:
|
|
137 |
3. 🟡 shibing624/text2vec-base-chinese (ov-qint8), int8 quantization with OV incurs a small performance hit on some tasks, and a tiny performance gain on others, when quantizing with [Chinese STSB](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt). Additionally, it results in a [4.78x speedup](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#benchmarks) on CPU.
|
138 |
|
139 |
- usage: shibing624/text2vec-base-chinese (onnx-O4), for gpu
|
140 |
-
```
|
141 |
from sentence_transformers import SentenceTransformer
|
142 |
|
143 |
model = SentenceTransformer(
|
@@ -145,16 +145,17 @@ model = SentenceTransformer(
|
|
145 |
backend="onnx",
|
146 |
model_kwargs={"file_name": "model_O4.onnx"},
|
147 |
)
|
148 |
-
embeddings = model.encode(["
|
149 |
print(embeddings.shape)
|
150 |
-
|
151 |
similarities = model.similarity(embeddings, embeddings)
|
152 |
print(similarities)
|
153 |
```
|
154 |
|
155 |
|
156 |
- usage: shibing624/text2vec-base-chinese (ov), for cpu
|
157 |
-
```
|
|
|
|
|
158 |
from sentence_transformers import SentenceTransformer
|
159 |
|
160 |
model = SentenceTransformer(
|
@@ -162,15 +163,15 @@ model = SentenceTransformer(
|
|
162 |
backend="openvino",
|
163 |
)
|
164 |
|
165 |
-
embeddings = model.encode(["
|
166 |
print(embeddings.shape)
|
167 |
-
|
168 |
similarities = model.similarity(embeddings, embeddings)
|
169 |
print(similarities)
|
170 |
```
|
171 |
|
172 |
- usage: shibing624/text2vec-base-chinese (ov-qint8), for cpu
|
173 |
-
```
|
|
|
174 |
from sentence_transformers import SentenceTransformer
|
175 |
|
176 |
model = SentenceTransformer(
|
@@ -178,9 +179,8 @@ model = SentenceTransformer(
|
|
178 |
backend="onnx",
|
179 |
model_kwargs={"file_name": "model_qint8_avx512_vnni.onnx"},
|
180 |
)
|
181 |
-
embeddings = model.encode(["
|
182 |
print(embeddings.shape)
|
183 |
-
|
184 |
similarities = model.similarity(embeddings, embeddings)
|
185 |
print(similarities)
|
186 |
```
|
|
|
137 |
3. 🟡 shibing624/text2vec-base-chinese (ov-qint8), int8 quantization with OV incurs a small performance hit on some tasks, and a tiny performance gain on others, when quantizing with [Chinese STSB](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt). Additionally, it results in a [4.78x speedup](https://sbert.net/docs/sentence_transformer/usage/efficiency.html#benchmarks) on CPU.
|
138 |
|
139 |
- usage: shibing624/text2vec-base-chinese (onnx-O4), for gpu
|
140 |
+
```python
|
141 |
from sentence_transformers import SentenceTransformer
|
142 |
|
143 |
model = SentenceTransformer(
|
|
|
145 |
backend="onnx",
|
146 |
model_kwargs={"file_name": "model_O4.onnx"},
|
147 |
)
|
148 |
+
embeddings = model.encode(["如何更换花呗绑定银行卡", "花呗更改绑定银行卡", "你是谁"])
|
149 |
print(embeddings.shape)
|
|
|
150 |
similarities = model.similarity(embeddings, embeddings)
|
151 |
print(similarities)
|
152 |
```
|
153 |
|
154 |
|
155 |
- usage: shibing624/text2vec-base-chinese (ov), for cpu
|
156 |
+
```python
|
157 |
+
# pip install 'optimum[openvino]'
|
158 |
+
|
159 |
from sentence_transformers import SentenceTransformer
|
160 |
|
161 |
model = SentenceTransformer(
|
|
|
163 |
backend="openvino",
|
164 |
)
|
165 |
|
166 |
+
embeddings = model.encode(["如何更换花呗绑定银行卡", "花呗更改绑定银行卡", "你是谁"])
|
167 |
print(embeddings.shape)
|
|
|
168 |
similarities = model.similarity(embeddings, embeddings)
|
169 |
print(similarities)
|
170 |
```
|
171 |
|
172 |
- usage: shibing624/text2vec-base-chinese (ov-qint8), for cpu
|
173 |
+
```python
|
174 |
+
# pip install optimum
|
175 |
from sentence_transformers import SentenceTransformer
|
176 |
|
177 |
model = SentenceTransformer(
|
|
|
179 |
backend="onnx",
|
180 |
model_kwargs={"file_name": "model_qint8_avx512_vnni.onnx"},
|
181 |
)
|
182 |
+
embeddings = model.encode(["如何更换花呗绑定银行卡", "花呗更改绑定银行卡", "你是谁"])
|
183 |
print(embeddings.shape)
|
|
|
184 |
similarities = model.similarity(embeddings, embeddings)
|
185 |
print(similarities)
|
186 |
```
|