--- license: llama3.1 library_name: transformers pipeline_tag: text-generation base_model: meta-llama/Meta-Llama-3.1-70B-Instruct language: - en - zh tags: - llama-factory - orpo --- > [!CAUTION] > For optimal performance, we refrain from fine-tuning the model's identity. Thus, inquiries such as "Who are you" or "Who developed you" may yield random responses that are not necessarily accurate. > [!IMPORTANT] > If you enjoy our model, please **give it a star on our Hugging Face repo** and kindly [**cite our model**](https://huggingface.co./shenzhi-wang/Llama3.1-70B-Chinese-Chat#citation). Your support means a lot to us. Thank you! # Updates - πŸš€πŸš€πŸš€ [July 25, 2024] We now introduce [shenzhi-wang/Llama3.1-70B-Chinese-Chat](https://huggingface.co./shenzhi-wang/Llama3.1-70B-Chinese-Chat)! The training dataset contains >100K preference pairs, and it exhibits significant enhancements, especially in **roleplay**, **function calling**, and **math** capabilities! - πŸ”₯ We provide the official **q3_k_m, q4_k_m, q8_0, and f16 GGUF** versions of Llama3.1-70B-Chinese-Chat at https://huggingface.co./shenzhi-wang/Llama3.1-70B-Chinese-Chat/tree/main/gguf! - πŸ”₯ We provide the official ollama version of Llama3.1-70B-Chinese-Chat at https://ollama.com/wangshenzhi/llama3.1_70b_chinese_chat! Quick use: `ollama run wangshenzhi/llama3.1_70b_chinese_chat`. # Model Summary llama3.1-70B-Chinese-Chat is an instruction-tuned language model for Chinese & English users with various abilities such as roleplaying & tool-using built upon the Meta-Llama-3.1-70B-Instruct model. Developers: [Shenzhi Wang](https://shenzhi-wang.netlify.app)\*, [Yaowei Zheng](https://github.com/hiyouga)\*, Guoyin Wang (in.ai), Shiji Song, Gao Huang. (\*: Equal Contribution) - License: [Llama-3.1 License](https://huggingface.co./meta-llama/Meta-Llama-3.1-70B/blob/main/LICENSE) - Base Model: Meta-Llama-3.1-70B-Instruct - Model Size: 8.03B - Context length: 128K (reported by [Meta-Llama-3.1-70B-Instruct model](https://huggingface.co./meta-llama/Meta-Llama-3.1-70B-Instruct), untested for our Chinese model) # 1. Introduction This is the first model specifically fine-tuned for Chinese & English users based on the [Meta-Llama-3.1-70B-Instruct model](https://huggingface.co./meta-llama/Meta-Llama-3.1-70B-Instruct). The fine-tuning algorithm used is ORPO [1]. [1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024). Training framework: [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory). Training details: - epochs: 3 - learning rate: 1.5e-6 - learning rate scheduler type: cosine - Warmup ratio: 0.1 - cutoff len (i.e. context length): 8192 - orpo beta (i.e. $\lambda$ in the ORPO paper): 0.05 - global batch size: 128 - fine-tuning type: full parameters - optimizer: paged_adamw_32bit # 2. Usage ## 2.1 Usage of Our BF16 Model 1. Please upgrade the `transformers` package to ensure it supports Llama3.1 models. The current version we are using is `4.43.0`. 2. Use the following Python script to download our BF16 model ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="shenzhi-wang/Llama3.1-70B-Chinese-Chat", ignore_patterns=["*.gguf"]) # Download our BF16 model without downloading GGUF models. ``` 3. Inference with the BF16 model ```python import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "/Your/Local/Path/to/Llama3.1-70B-Chinese-Chat" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ {"role": "user", "content": "ε†™δΈ€ι¦–ε…³δΊŽζœΊε™¨ε­¦δΉ ηš„θ―—γ€‚"}, ] input_ids = tokenizer.apply_chat_template( chat, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=8192, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1] :] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ## 2.2 Usage of Our GGUF Models 1. Download our GGUF models from the [gguf_models folder](https://huggingface.co./shenzhi-wang/Llama3.1-70B-Chinese-Chat/tree/main/gguf); 2. Use the GGUF models with [LM Studio](https://lmstudio.ai/); 3. You can also follow the instructions from https://github.com/ggerganov/llama.cpp/tree/master#usage to use gguf models. # Citation If our Llama3.1-70B-Chinese-Chat is helpful, please kindly cite as: ``` @misc {shenzhi_wang_2024, author = { Wang, Shenzhi and Zheng, Yaowei and Wang, Guoyin and Song, Shiji and Huang, Gao }, title = { Llama3.1-70B-Chinese-Chat }, year = 2024, url = { https://huggingface.co./shenzhi-wang/Llama3.1-70B-Chinese-Chat }, doi = { 10.57967/hf/2780 }, publisher = { Hugging Face } } ```