--- inference: false language: - en tags: - 'LLaMA ' - MultiModal --- *This is a Hugging Face friendly Model, the original can be found at https://huggingface.co./liuhaotian/llava-llama-2-7b-chat-lightning-lora-preview*
# LLaVA Model Card ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-v1.5-7B was trained in September 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 158K GPT-generated multimodal instruction-following data. - 450K academic-task-oriented VQA data mixture. - 40K ShareGPT data. ## Evaluation dataset A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs. ## Usage usage is as follows ```python from transformers import LlavaProcessor, LlavaForCausalLM from PIL import Image import requests import torch PATH_TO_CONVERTED_WEIGHTS = "shauray/Llava-1.5-7B-hf" model = LlavaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS, device_map="cuda",torch_dtype=torch.float16).to("cuda") processor = LlavaProcessor.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) url = "https://llava-vl.github.io/static/images/view.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") prompt = "How can you best describe this image?" inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda", torch.float16) # Generate generate_ids = model.generate(**inputs, do_sample=True, max_length=1024, temperature=0.1, top_p=0.9, ) out = processor.decode(generate_ids[0, inputs["input_ids"].shape[1]:], skip_special_tokens=True).strip() print(out) """The photograph shows a wooden dock floating on the water, with mountains in the background. It is an idyllic scene that captures both nature and human-made structures at their finest moments of beauty or tranquility depending upon one's perspective as they gaze into it""" ```