--- inference: false license: mit license_link: https://huggingface.co./microsoft/phi-2/resolve/main/LICENSE language: - en pipeline_tag: text-generation tags: - moe - nlp - code - cognitivecomputations/dolphin-2_6-phi-2 - lxuechen/phi-2-dpo --- ![](https://i.imgur.com/UOb2fvh.jpg) # phixtral-2x2_8 phixtral-2x2_8 is the first Mixure of Experts (MoE) made with two [microsoft/phi-2](https://huggingface.co./microsoft/phi-2) models, inspired by the [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-v0.1) architecture. It performs better than each individual expert. You can try it out using this [Space](https://huggingface.co./spaces/mlabonne/phixtral-chat). ## 🏆 Evaluation | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |----------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[**phixtral-2x2_8**](https://huggingface.co./mlabonne/phixtral-2x2_8)| **34.1**| **70.44**| **48.78**| **37.82**| **47.78**| |[dolphin-2_6-phi-2](https://huggingface.co./cognitivecomputations/dolphin-2_6-phi-2)| 33.12| 69.85| 47.39| 37.2| 46.89| |[phi-2-dpo](https://huggingface.co./lxuechen/phi-2-dpo)| 30.39| 71.68| 50.75| 34.9| 46.93| |[phi-2](https://huggingface.co./microsoft/phi-2)| 27.98| 70.8| 44.43| 35.21| 44.61| Check [YALL - Yet Another LLM Leaderboard](https://huggingface.co./spaces/mlabonne/Yet_Another_LLM_Leaderboard) to compare it with other models. ## 🧩 Configuration The model has been made with a custom version of the [mergekit](https://github.com/cg123/mergekit) library (mixtral branch) and the following configuration: ```yaml base_model: cognitivecomputations/dolphin-2_6-phi-2 gate_mode: cheap_embed experts: - source_model: cognitivecomputations/dolphin-2_6-phi-2 positive_prompts: [""] - source_model: lxuechen/phi-2-dpo positive_prompts: [""] ``` ## 💻 Usage Here's a [Colab notebook](https://colab.research.google.com/drive/1k6C_oJfEKUq0mtuWKisvoeMHxTcIxWRa?usp=sharing) to run Phixtral in 4-bit precision on a free T4 GPU. ```python !pip install -q --upgrade transformers einops accelerate bitsandbytes import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "phixtral-2x2_8" instruction = ''' def print_prime(n): """ Print all primes between 1 and n """ ''' torch.set_default_device("cuda") # Load the model and tokenizer model = AutoModelForCausalLM.from_pretrained( f"mlabonne/{model_name}", torch_dtype="auto", load_in_4bit=True, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( f"mlabonne/{model_name}", trust_remote_code=True ) # Tokenize the input string inputs = tokenizer( instruction, return_tensors="pt", return_attention_mask=False ) # Generate text using the model outputs = model.generate(**inputs, max_length=200) # Decode and print the output text = tokenizer.batch_decode(outputs)[0] print(text) ``` Inspired by [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-v0.1), you can specify the `num_experts_per_tok` and `num_local_experts` in the [`config.json`](https://huggingface.co./mlabonne/phixtral-2x2_8/blob/main/config.json#L26-L27) file (2 for both by default). This configuration is automatically loaded in `configuration.py`. [vince62s](https://huggingface.co./vince62s) implemented the MoE inference code in the `modeling_phi.py` file. In particular, see the [MoE class](https://huggingface.co./mlabonne/phixtral-2x2_8/blob/main/modeling_phi.py#L293-L317). ## 🤝 Acknowledgments A special thanks to [vince62s](https://huggingface.co./vince62s) for the inference code and the dynamic configuration of the number of experts. He was very patient and helped me to debug everything. Thanks to [Charles Goddard](https://github.com/cg123) for the [mergekit](https://github.com/cg123/mergekit) library and the implementation of the [MoE for clowns](https://goddard.blog/posts/clown-moe/). Thanks to [ehartford](https://huggingface.co./ehartford) and [lxuechen](https://huggingface.co./lxuechen) for their fine-tuned phi-2 models.