--- base_model: - unsloth/Meta-Llama-3.1-8B model-index: - name: Llama-3.1-8B-Experimental-1206-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 69.67 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llama-3.1-8B-Experimental-1206-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 30.06 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llama-3.1-8B-Experimental-1206-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 11.1 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llama-3.1-8B-Experimental-1206-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.6 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llama-3.1-8B-Experimental-1206-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.5 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llama-3.1-8B-Experimental-1206-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.1 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llama-3.1-8B-Experimental-1206-Instruct name: Open LLM Leaderboard --- # Llama 3.1 8B Experimental 1206 ### Overall Strengths 1. **Logical and Boolean Reasoning** – Excels in tasks requiring clear, rule-based logic and manipulation of true/false statements. 2. **Focused Domain Knowledge** – Strong at certain specialized tasks (sports rules, ruin names, hyperbaton) that blend world knowledge with language comprehension. 3. **Good Instruction Compliance** – High prompt-level and instance-level accuracy (both strict and loose) indicate that it follows user instructions effectively, even in more complex or nuanced prompts. 4. **Reasonable Multi-step Reasoning** – While not the best in every logic category, it still shows solid performance (60%+) on tasks like disambiguation and causal reasoning. 5. **Extended Context Window (138k)** – The large 138k token context allows the model to handle lengthy inputs and maintain coherence across extensive passages or multi-turn conversations. This is especially valuable for tasks like long-document question answering, summarization, or complex scenario analysis where context retention is crucial. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/sethuiyer__Llama-3.1-8B-Experimental-1206-Instruct-details) | Metric |Value| |-------------------|----:| |Avg. |25.67| |IFEval (0-Shot) |69.67| |BBH (3-Shot) |30.06| |MATH Lvl 5 (4-Shot)|11.10| |GPQA (0-shot) | 6.60| |MuSR (0-shot) | 8.50| |MMLU-PRO (5-shot) |28.10|