--- language: es license: gpl-3.0 tags: - PyTorch - Transformers - Token Classification - xlm-roberta - xlm-roberta-large widget: - text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago." - text: "Si te metes en el Franco desde la Alameda, vas hacia la Catedral." - text: "Y allí precisamente es Santiago el patrón del pueblo." model-index: - name: es_trf_ner_cds_xlm-large results: [] --- # Introduction This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co./xlm-roberta-large) for Named-Entity Recognition, in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC). ## Usage You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("es_trf_ner_cds_xlm-large") model = AutoModelForTokenClassification.from_pretrained("es_trf_ner_cds_xlm-large") example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. Si te metes en el Franco desde la Alameda, vas hacia la Catedral. Y allí precisamente es Santiago el patrón del pueblo." ner_pipe = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") for ent in ner_pipe(example): print(ent) ``` ## Dataset ToDo ## Model performance entity|precision|recall|f1 -|-|-|- LOC|0.973|0.983|0.978 MISC|0.760|0.788|0.773 ORG|0.885|0.701|0.783 PER|0.937|0.878|0.906 micro avg|0.953|0.958|0.955 macro avg|0.889|0.838|0.860 weighted avg|0.953|0.958|0.955 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3