--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - f1 model-index: - name: 7-classifier-finetuned-padchest results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: F1 type: f1 value: 0.7449020840597932 --- # 7-classifier-finetuned-padchest This model is a fine-tuned version of [nickmuchi/vit-finetuned-chest-xray-pneumonia](https://huggingface.co./nickmuchi/vit-finetuned-chest-xray-pneumonia) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7844 - F1: 0.7449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0948 | 1.0 | 18 | 1.9801 | 0.1856 | | 1.916 | 2.0 | 36 | 1.7571 | 0.3242 | | 1.6873 | 3.0 | 54 | 1.5333 | 0.4149 | | 1.4576 | 4.0 | 72 | 1.3515 | 0.4656 | | 1.2824 | 5.0 | 90 | 1.2288 | 0.4936 | | 1.2004 | 6.0 | 108 | 1.1050 | 0.5462 | | 1.1264 | 7.0 | 126 | 1.0643 | 0.5713 | | 1.0149 | 8.0 | 144 | 1.0612 | 0.5718 | | 0.9839 | 9.0 | 162 | 0.9897 | 0.6266 | | 0.9001 | 10.0 | 180 | 0.9542 | 0.6710 | | 0.9093 | 11.0 | 198 | 0.8993 | 0.6811 | | 0.8824 | 12.0 | 216 | 0.8877 | 0.7018 | | 0.8237 | 13.0 | 234 | 0.8970 | 0.7071 | | 0.8446 | 14.0 | 252 | 0.8619 | 0.7084 | | 0.7766 | 15.0 | 270 | 0.8271 | 0.7331 | | 0.7405 | 16.0 | 288 | 0.8516 | 0.7237 | | 0.7672 | 17.0 | 306 | 0.8036 | 0.7223 | | 0.7149 | 18.0 | 324 | 0.8188 | 0.7186 | | 0.7 | 19.0 | 342 | 0.8391 | 0.7274 | | 0.7011 | 20.0 | 360 | 0.7922 | 0.7424 | | 0.695 | 21.0 | 378 | 0.8065 | 0.7394 | | 0.6655 | 22.0 | 396 | 0.7783 | 0.7473 | | 0.6377 | 23.0 | 414 | 0.7977 | 0.7296 | | 0.6884 | 24.0 | 432 | 0.7724 | 0.7387 | | 0.614 | 25.0 | 450 | 0.8372 | 0.7351 | | 0.6008 | 26.0 | 468 | 0.8229 | 0.7277 | | 0.6402 | 27.0 | 486 | 0.7958 | 0.7300 | | 0.592 | 28.0 | 504 | 0.8222 | 0.7264 | | 0.5774 | 29.0 | 522 | 0.7613 | 0.7511 | | 0.584 | 30.0 | 540 | 0.7866 | 0.7377 | | 0.558 | 31.0 | 558 | 0.8298 | 0.7351 | | 0.5871 | 32.0 | 576 | 0.7727 | 0.7494 | | 0.5608 | 33.0 | 594 | 0.7753 | 0.7695 | | 0.5385 | 34.0 | 612 | 0.7585 | 0.7575 | | 0.5461 | 35.0 | 630 | 0.7664 | 0.7521 | | 0.506 | 36.0 | 648 | 0.7624 | 0.7581 | | 0.5132 | 37.0 | 666 | 0.7914 | 0.7347 | | 0.5083 | 38.0 | 684 | 0.7913 | 0.7425 | | 0.5042 | 39.0 | 702 | 0.7704 | 0.7556 | | 0.4539 | 40.0 | 720 | 0.7590 | 0.7578 | | 0.4714 | 41.0 | 738 | 0.7912 | 0.7503 | | 0.4681 | 42.0 | 756 | 0.7838 | 0.7420 | | 0.4482 | 43.0 | 774 | 0.7781 | 0.7345 | | 0.4535 | 44.0 | 792 | 0.7823 | 0.7415 | | 0.4284 | 45.0 | 810 | 0.8104 | 0.7449 | | 0.436 | 46.0 | 828 | 0.7829 | 0.7421 | | 0.4526 | 47.0 | 846 | 0.7932 | 0.7567 | | 0.4672 | 48.0 | 864 | 0.7827 | 0.7411 | | 0.4171 | 49.0 | 882 | 0.7835 | 0.7447 | | 0.4126 | 50.0 | 900 | 0.7844 | 0.7449 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.18.0 - Tokenizers 0.13.3