Update README.md
Browse files
README.md
CHANGED
@@ -16,10 +16,11 @@ tags:
|
|
16 |
should probably proofread and complete it, then remove this comment. -->
|
17 |
|
18 |
|
19 |
-
#
|
20 |
|
21 |
-
These are
|
22 |
-
|
|
|
23 |
|
24 |
prompt: Give this the look of a traditional Japanese woodblock print.
|
25 |

|
@@ -62,16 +63,185 @@ Please adhere to the licensing terms as described [here](https://huggingface.co/
|
|
62 |
|
63 |
## Intended uses & limitations
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
```
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
```
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
## Training details
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
should probably proofread and complete it, then remove this comment. -->
|
17 |
|
18 |
|
19 |
+
# Flux Edit
|
20 |
|
21 |
+
These are the control weights trained on [black-forest-labs/FLUX.1-dev](htpss://hf.co/black-forest-labs/FLUX.1-dev)
|
22 |
+
and [TIGER-Lab/OmniEdit-Filtered-1.2M](https://huggingface.co/datasets/TIGER-Lab/OmniEdit-Filtered-1.2M) for image editing. We use the
|
23 |
+
[Flux Control framework](https://blackforestlabs.ai/flux-1-tools/) for fine-tuning.
|
24 |
|
25 |
prompt: Give this the look of a traditional Japanese woodblock print.
|
26 |

|
|
|
63 |
|
64 |
## Intended uses & limitations
|
65 |
|
66 |
+
### Inference
|
67 |
+
|
68 |
+
```py
|
69 |
+
from diffusers import FluxControlPipeline, FluxTransformer2DModel
|
70 |
+
from diffusers.utils import load_image
|
71 |
+
import torch
|
72 |
+
|
73 |
+
path = "sayakpaul/FLUX.1-dev-edit-v0" # to change
|
74 |
+
edit_transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16)
|
75 |
+
pipeline = FluxControlPipeline.from_pretrained(
|
76 |
+
"black-forest-labs/FLUX.1-dev", transformer=edit_transformer, torch_dtype=torch.bfloat16
|
77 |
+
).to("cuda")
|
78 |
+
|
79 |
+
image = load_image("./assets/mushroom.jpg") # resize as needed.
|
80 |
+
print(image.size)
|
81 |
+
|
82 |
+
prompt = "turn the color of mushroom to gray"
|
83 |
+
image = pipeline(
|
84 |
+
control_image=image,
|
85 |
+
prompt=prompt,
|
86 |
+
guidance_scale=30., # change this as needed.
|
87 |
+
num_inference_steps=50, # change this as needed.
|
88 |
+
max_sequence_length=512,
|
89 |
+
height=image.height,
|
90 |
+
width=image.width,
|
91 |
+
generator=torch.manual_seed(0)
|
92 |
+
).images[0]
|
93 |
+
image.save("edited_image.png")
|
94 |
```
|
95 |
|
96 |
+
### Speeding inference with a turbo LoRA
|
97 |
+
|
98 |
+
We can speed up the inference by reducing the `num_inference_steps` to produce a nice image by using turbo LoRA like [`ByteDance/Hyper-SD`](https://hf.co/ByteDance/Hyper-SD).
|
99 |
+
|
100 |
+
Make sure to install `peft` before running the code below: `pip install -U peft`.
|
101 |
+
|
102 |
+
<details>
|
103 |
+
<summary>Code</summary>
|
104 |
+
|
105 |
+
```py
|
106 |
+
from diffusers import FluxControlPipeline, FluxTransformer2DModel
|
107 |
+
from diffusers.utils import load_image
|
108 |
+
from huggingface_hub import hf_hub_download
|
109 |
+
import torch
|
110 |
+
|
111 |
+
path = "sayakpaul/FLUX.1-dev-edit-v0" # to change
|
112 |
+
edit_transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16)
|
113 |
+
control_pipe = FluxControlPipeline.from_pretrained(
|
114 |
+
"black-forest-labs/FLUX.1-dev", transformer=edit_transformer, torch_dtype=torch.bfloat16
|
115 |
+
).to("cuda")
|
116 |
+
|
117 |
+
# load the turbo LoRA
|
118 |
+
control_pipe.load_lora_weights(
|
119 |
+
hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
|
120 |
+
)
|
121 |
+
control_pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
|
122 |
+
|
123 |
+
image = load_image("./assets/mushroom.jpg") # resize as needed.
|
124 |
+
print(image.size)
|
125 |
+
|
126 |
+
prompt = "turn the color of mushroom to gray"
|
127 |
+
image = pipeline(
|
128 |
+
control_image=image,
|
129 |
+
prompt=prompt,
|
130 |
+
guidance_scale=30., # change this as needed.
|
131 |
+
num_inference_steps=8, # change this as needed.
|
132 |
+
max_sequence_length=512,
|
133 |
+
height=image.height,
|
134 |
+
width=image.width,
|
135 |
+
generator=torch.manual_seed(0)
|
136 |
+
).images[0]
|
137 |
+
image.save("edited_image.png")
|
138 |
+
```
|
139 |
|
140 |
+
</details>
|
141 |
+
<br><br>
|
142 |
+
<details>
|
143 |
+
<summary>Comparison</summary>
|
144 |
+
|
145 |
+
<table align="center">
|
146 |
+
<tr>
|
147 |
+
<th>50 steps</th>
|
148 |
+
<th>8 steps</th>
|
149 |
+
</tr>
|
150 |
+
<tr>
|
151 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_car.jpg" alt="50 steps 1" width="150"></td>
|
152 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_8steps_car.jpg" alt="8 steps 1" width="150"></td>
|
153 |
+
</tr>
|
154 |
+
<tr>
|
155 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_norte_dam.jpg" alt="50 steps 2" width="150"></td>
|
156 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_8steps_norte_dam.jpg" alt="8 steps 2" width="150"></td>
|
157 |
+
</tr>
|
158 |
+
<tr>
|
159 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_mushroom.jpg" alt="50 steps 3" width="150"></td>
|
160 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_8steps_mushroom.jpg" alt="8 steps 3" width="150"></td>
|
161 |
+
</tr>
|
162 |
+
<tr>
|
163 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_green_creature.jpg" alt="50 steps 4" width="150"></td>
|
164 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_8steps_green_creature.jpg" alt="8 steps 4" width="150"></td>
|
165 |
+
</tr>
|
166 |
+
</table>
|
167 |
+
|
168 |
+
|
169 |
+
</details>
|
170 |
+
|
171 |
+
You can also choose to perform quantization if the memory requirements cannot be satisfied further w.r.t your hardware. Refer to the [Diffusers documentation](https://huggingface.co/docs/diffusers/main/en/quantization/overview) to learn more.
|
172 |
+
|
173 |
+
`guidance_scale` also impacts the results:
|
174 |
+
|
175 |
+
<table align="center">
|
176 |
+
<tr>
|
177 |
+
<th>Source Image</th>
|
178 |
+
<th>Edited Image (gs: 10)</th>
|
179 |
+
<th>Edited Image (gs: 20)</th>
|
180 |
+
<th>Edited Image (gs: 30)</th>
|
181 |
+
<th>Edited Image (gs: 40)</th>
|
182 |
+
</tr>
|
183 |
+
<tr>
|
184 |
+
<td align="center">
|
185 |
+
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/assets/car.jpg" alt="Source Image 1" width="150"><br>
|
186 |
+
<em>Give this the look of a traditional Japanese woodblock print.</em>
|
187 |
+
</td>
|
188 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-10_car.jpg" alt="Edited Image gs 10" width="150"></td>
|
189 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-20_car.jpg" alt="Edited Image gs 20" width="150"></td>
|
190 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-30_car.jpg" alt="Edited Image gs 30" width="150"></td>
|
191 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-40_car.jpg" alt="Edited Image gs 40" width="150"></td>
|
192 |
+
</tr>
|
193 |
+
<tr>
|
194 |
+
<td align="center">
|
195 |
+
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/assets/green_creature" alt="Source Image 2" width="150"><br>
|
196 |
+
<em>transform the setting to a winter scene</em>
|
197 |
+
</td>
|
198 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-10_green_creature.jpg" alt="Edited Image gs 10" width="150"></td>
|
199 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-20_green_creature.jpg" alt="Edited Image gs 20" width="150"></td>
|
200 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-30_green_creature.jpg" alt="Edited Image gs 30" width="150"></td>
|
201 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-40_green_creature.jpg" alt="Edited Image gs 40" width="150"></td>
|
202 |
+
</tr>
|
203 |
+
<tr>
|
204 |
+
<td align="center">
|
205 |
+
<img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/assets/mushroom.jpg" alt="Source Image 3" width="150"><br>
|
206 |
+
<em>turn the color of mushroom to gray</em>
|
207 |
+
</td>
|
208 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-10_mushroom.jpg" alt="Edited Image gs 10" width="150"></td>
|
209 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-20_mushroom.jpg" alt="Edited Image gs 20" width="150"></td>
|
210 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-30_mushroom.jpg" alt="Edited Image gs 30" width="150"></td>
|
211 |
+
<td align="center"><img src="https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_gs-40_mushroom.jpg" alt="Edited Image gs 40" width="150"></td>
|
212 |
+
</tr>
|
213 |
+
</table>
|
214 |
+
|
215 |
+
|
216 |
+
### Limitations and bias
|
217 |
+
|
218 |
+
Expect the model to perform underwhelmingly as we don't know the exact training details of Flux Control.
|
219 |
|
220 |
## Training details
|
221 |
|
222 |
+
Fine-tuning codebase is [here](https://github.com/sayakpaul/flux-image-editing). Training hyperparameters:
|
223 |
+
|
224 |
+
* Per GPU batch size: 4
|
225 |
+
* Gradient accumulation steps: 4
|
226 |
+
* Guidance scale: 30
|
227 |
+
* BF16 mixed-precision
|
228 |
+
* AdamW optimizer (8bit from `bitsandbytes`)
|
229 |
+
* Constant learning rate of 5e-5
|
230 |
+
* Weight decay of 1e-6
|
231 |
+
* 20000 training steps
|
232 |
+
|
233 |
+
|
234 |
+
Training was conducted using a node of 8xH100s.
|
235 |
+
|
236 |
+
We used a simplified flow mechanism to perform the linear interpolation. In pseudo-code, that looks like:
|
237 |
+
|
238 |
+
```py
|
239 |
+
sigmas = torch.rand(batch_size)
|
240 |
+
timesteps = (sigmas * noise_scheduler.config.num_train_timesteps).long()
|
241 |
+
...
|
242 |
+
|
243 |
+
noisy_model_input = (1.0 - sigmas) * pixel_latents + sigmas * noise
|
244 |
+
```
|
245 |
+
|
246 |
+
where `pixel_latents` is computed from the source images and `noise` is drawn from a Gaussian distribution. For more details, check out
|
247 |
+
the repository.
|