--- tags: - merge - mergekit - lazymergekit - Phind/Phind-CodeLlama-34B-v2 - codefuse-ai/CodeFuse-CodeLlama-34B base_model: - Phind/Phind-CodeLlama-34B-v2 - codefuse-ai/CodeFuse-CodeLlama-34B --- # Phind-CodeLlama-34B-v2-Codefuse-CodeLlama-34B-dare-ties Phind-CodeLlama-34B-v2-Codefuse-CodeLlama-34B-dare-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Phind/Phind-CodeLlama-34B-v2](https://huggingface.co./Phind/Phind-CodeLlama-34B-v2) * [codefuse-ai/CodeFuse-CodeLlama-34B](https://huggingface.co./codefuse-ai/CodeFuse-CodeLlama-34B) ## 🧩 Configuration ```yaml models: - model: Phind/Phind-CodeLlama-34B-v2 parameters: density: 0.5 weight: 0.6 # No parameters necessary for base model - model: codefuse-ai/CodeFuse-CodeLlama-34B parameters: density: 0.5 weight: 0.4 merge_method: dare_ties base_model: Phind/Phind-CodeLlama-34B-v2 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "saucam/Phind-CodeLlama-34B-v2-Codefuse-CodeLlama-34B-dare-ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```