--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language hi metrics: - name: Wer type: wer value: 32.09599593667993 --- # This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4519 - Wer: 32.01 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | WER | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 0.1011 | 2.44 | 1000 | 0.3075 | 34.63 | | 0.0264 | 4.89 | 2000 | 0.3558 | 33.13 | | 0.0025 | 7.33 | 3000 | 0.4214 | 32.59 | | 0.0006 | 9.78 | 4000 | 0.4519 | 32.01 | | 0.0002 | 12.22 | 5000 | 0.4679 | 32.10 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1 - Datasets 2.5.3.dev0 - Tokenizers 0.12.1