Saving train state of step 120000
Browse files- checkpoint-120000-epoch-8/config.json +278 -0
- checkpoint-120000-epoch-8/generation_config.json +12 -0
- checkpoint-120000-epoch-8/optimizer.bin +3 -0
- checkpoint-120000-epoch-8/pytorch_model.bin +3 -0
- checkpoint-120000-epoch-8/random_states_0.pkl +3 -0
- checkpoint-120000-epoch-8/random_states_1.pkl +3 -0
- checkpoint-120000-epoch-8/random_states_2.pkl +3 -0
- checkpoint-120000-epoch-8/random_states_3.pkl +3 -0
- checkpoint-120000-epoch-8/random_states_4.pkl +3 -0
- checkpoint-120000-epoch-8/random_states_5.pkl +3 -0
- checkpoint-120000-epoch-8/random_states_6.pkl +3 -0
- checkpoint-120000-epoch-8/random_states_7.pkl +3 -0
- checkpoint-120000-epoch-8/scheduler.bin +3 -0
- starting_point_0.01.json +2 -1
- training/__pycache__/arguments.cpython-311.pyc +0 -0
- training/__pycache__/data.cpython-311.pyc +0 -0
- training/__pycache__/eval.cpython-311.pyc +0 -0
- training/__pycache__/utils.cpython-311.pyc +0 -0
- training/arguments.py +7 -1
- training/data.py +6 -1
- training/eval.py +1 -2
- training/run_parler_tts_training.py +30 -10
- training/utils.py +4 -2
checkpoint-120000-epoch-8/config.json
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ParlerTTSForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"audio_encoder": {
|
6 |
+
"_name_or_path": "parler-tts/dac_44khZ_8kbps",
|
7 |
+
"add_cross_attention": false,
|
8 |
+
"architectures": [
|
9 |
+
"DACModel"
|
10 |
+
],
|
11 |
+
"bad_words_ids": null,
|
12 |
+
"begin_suppress_tokens": null,
|
13 |
+
"bos_token_id": null,
|
14 |
+
"chunk_size_feed_forward": 0,
|
15 |
+
"codebook_size": 1024,
|
16 |
+
"cross_attention_hidden_size": null,
|
17 |
+
"decoder_start_token_id": null,
|
18 |
+
"diversity_penalty": 0.0,
|
19 |
+
"do_sample": false,
|
20 |
+
"early_stopping": false,
|
21 |
+
"encoder_no_repeat_ngram_size": 0,
|
22 |
+
"eos_token_id": null,
|
23 |
+
"exponential_decay_length_penalty": null,
|
24 |
+
"finetuning_task": null,
|
25 |
+
"forced_bos_token_id": null,
|
26 |
+
"forced_eos_token_id": null,
|
27 |
+
"frame_rate": 86,
|
28 |
+
"id2label": {
|
29 |
+
"0": "LABEL_0",
|
30 |
+
"1": "LABEL_1"
|
31 |
+
},
|
32 |
+
"is_decoder": false,
|
33 |
+
"is_encoder_decoder": false,
|
34 |
+
"label2id": {
|
35 |
+
"LABEL_0": 0,
|
36 |
+
"LABEL_1": 1
|
37 |
+
},
|
38 |
+
"latent_dim": 1024,
|
39 |
+
"length_penalty": 1.0,
|
40 |
+
"max_length": 20,
|
41 |
+
"min_length": 0,
|
42 |
+
"model_bitrate": 8,
|
43 |
+
"model_type": "dac",
|
44 |
+
"no_repeat_ngram_size": 0,
|
45 |
+
"num_beam_groups": 1,
|
46 |
+
"num_beams": 1,
|
47 |
+
"num_codebooks": 9,
|
48 |
+
"num_return_sequences": 1,
|
49 |
+
"output_attentions": false,
|
50 |
+
"output_hidden_states": false,
|
51 |
+
"output_scores": false,
|
52 |
+
"pad_token_id": null,
|
53 |
+
"prefix": null,
|
54 |
+
"problem_type": null,
|
55 |
+
"pruned_heads": {},
|
56 |
+
"remove_invalid_values": false,
|
57 |
+
"repetition_penalty": 1.0,
|
58 |
+
"return_dict": true,
|
59 |
+
"return_dict_in_generate": false,
|
60 |
+
"sampling_rate": 44100,
|
61 |
+
"sep_token_id": null,
|
62 |
+
"suppress_tokens": null,
|
63 |
+
"task_specific_params": null,
|
64 |
+
"temperature": 1.0,
|
65 |
+
"tf_legacy_loss": false,
|
66 |
+
"tie_encoder_decoder": false,
|
67 |
+
"tie_word_embeddings": true,
|
68 |
+
"tokenizer_class": null,
|
69 |
+
"top_k": 50,
|
70 |
+
"top_p": 1.0,
|
71 |
+
"torch_dtype": "float32",
|
72 |
+
"torchscript": false,
|
73 |
+
"typical_p": 1.0,
|
74 |
+
"use_bfloat16": false
|
75 |
+
},
|
76 |
+
"decoder": {
|
77 |
+
"_name_or_path": "./parler-tts-untrained-600M/decoder",
|
78 |
+
"activation_dropout": 0.0,
|
79 |
+
"activation_function": "gelu",
|
80 |
+
"add_cross_attention": true,
|
81 |
+
"architectures": [
|
82 |
+
"ParlerTTSForCausalLM"
|
83 |
+
],
|
84 |
+
"attention_dropout": 0.0,
|
85 |
+
"bad_words_ids": null,
|
86 |
+
"begin_suppress_tokens": null,
|
87 |
+
"bos_token_id": 1025,
|
88 |
+
"chunk_size_feed_forward": 0,
|
89 |
+
"cross_attention_hidden_size": null,
|
90 |
+
"decoder_start_token_id": null,
|
91 |
+
"diversity_penalty": 0.0,
|
92 |
+
"do_sample": false,
|
93 |
+
"dropout": 0.1,
|
94 |
+
"early_stopping": false,
|
95 |
+
"encoder_no_repeat_ngram_size": 0,
|
96 |
+
"eos_token_id": 1024,
|
97 |
+
"exponential_decay_length_penalty": null,
|
98 |
+
"ffn_dim": 4096,
|
99 |
+
"finetuning_task": null,
|
100 |
+
"forced_bos_token_id": null,
|
101 |
+
"forced_eos_token_id": null,
|
102 |
+
"hidden_size": 1024,
|
103 |
+
"id2label": {
|
104 |
+
"0": "LABEL_0",
|
105 |
+
"1": "LABEL_1"
|
106 |
+
},
|
107 |
+
"initializer_factor": 0.02,
|
108 |
+
"is_decoder": true,
|
109 |
+
"is_encoder_decoder": false,
|
110 |
+
"label2id": {
|
111 |
+
"LABEL_0": 0,
|
112 |
+
"LABEL_1": 1
|
113 |
+
},
|
114 |
+
"layerdrop": 0.0,
|
115 |
+
"length_penalty": 1.0,
|
116 |
+
"max_length": 20,
|
117 |
+
"max_position_embeddings": 4096,
|
118 |
+
"min_length": 0,
|
119 |
+
"model_type": "parler_tts_decoder",
|
120 |
+
"no_repeat_ngram_size": 0,
|
121 |
+
"num_attention_heads": 16,
|
122 |
+
"num_beam_groups": 1,
|
123 |
+
"num_beams": 1,
|
124 |
+
"num_codebooks": 9,
|
125 |
+
"num_hidden_layers": 24,
|
126 |
+
"num_return_sequences": 1,
|
127 |
+
"output_attentions": false,
|
128 |
+
"output_hidden_states": false,
|
129 |
+
"output_scores": false,
|
130 |
+
"pad_token_id": 1024,
|
131 |
+
"prefix": null,
|
132 |
+
"problem_type": null,
|
133 |
+
"pruned_heads": {},
|
134 |
+
"remove_invalid_values": false,
|
135 |
+
"repetition_penalty": 1.0,
|
136 |
+
"return_dict": true,
|
137 |
+
"return_dict_in_generate": false,
|
138 |
+
"rope_embeddings": false,
|
139 |
+
"rope_theta": 10000.0,
|
140 |
+
"scale_embedding": false,
|
141 |
+
"sep_token_id": null,
|
142 |
+
"suppress_tokens": null,
|
143 |
+
"task_specific_params": null,
|
144 |
+
"temperature": 1.0,
|
145 |
+
"tf_legacy_loss": false,
|
146 |
+
"tie_encoder_decoder": false,
|
147 |
+
"tie_word_embeddings": false,
|
148 |
+
"tokenizer_class": null,
|
149 |
+
"top_k": 50,
|
150 |
+
"top_p": 1.0,
|
151 |
+
"torch_dtype": "float32",
|
152 |
+
"torchscript": false,
|
153 |
+
"typical_p": 1.0,
|
154 |
+
"use_bfloat16": false,
|
155 |
+
"use_cache": true,
|
156 |
+
"vocab_size": 1088
|
157 |
+
},
|
158 |
+
"decoder_start_token_id": 1025,
|
159 |
+
"is_encoder_decoder": true,
|
160 |
+
"model_type": "parler_tts",
|
161 |
+
"pad_token_id": 1024,
|
162 |
+
"prompt_cross_attention": true,
|
163 |
+
"text_encoder": {
|
164 |
+
"_name_or_path": "google/flan-t5-base",
|
165 |
+
"add_cross_attention": false,
|
166 |
+
"architectures": [
|
167 |
+
"T5ForConditionalGeneration"
|
168 |
+
],
|
169 |
+
"bad_words_ids": null,
|
170 |
+
"begin_suppress_tokens": null,
|
171 |
+
"bos_token_id": null,
|
172 |
+
"chunk_size_feed_forward": 0,
|
173 |
+
"classifier_dropout": 0.0,
|
174 |
+
"cross_attention_hidden_size": null,
|
175 |
+
"d_ff": 2048,
|
176 |
+
"d_kv": 64,
|
177 |
+
"d_model": 768,
|
178 |
+
"decoder_start_token_id": 0,
|
179 |
+
"dense_act_fn": "gelu_new",
|
180 |
+
"diversity_penalty": 0.0,
|
181 |
+
"do_sample": false,
|
182 |
+
"dropout_rate": 0.1,
|
183 |
+
"early_stopping": false,
|
184 |
+
"encoder_no_repeat_ngram_size": 0,
|
185 |
+
"eos_token_id": 1,
|
186 |
+
"exponential_decay_length_penalty": null,
|
187 |
+
"feed_forward_proj": "gated-gelu",
|
188 |
+
"finetuning_task": null,
|
189 |
+
"forced_bos_token_id": null,
|
190 |
+
"forced_eos_token_id": null,
|
191 |
+
"id2label": {
|
192 |
+
"0": "LABEL_0",
|
193 |
+
"1": "LABEL_1"
|
194 |
+
},
|
195 |
+
"initializer_factor": 1.0,
|
196 |
+
"is_decoder": false,
|
197 |
+
"is_encoder_decoder": true,
|
198 |
+
"is_gated_act": true,
|
199 |
+
"label2id": {
|
200 |
+
"LABEL_0": 0,
|
201 |
+
"LABEL_1": 1
|
202 |
+
},
|
203 |
+
"layer_norm_epsilon": 1e-06,
|
204 |
+
"length_penalty": 1.0,
|
205 |
+
"max_length": 20,
|
206 |
+
"min_length": 0,
|
207 |
+
"model_type": "t5",
|
208 |
+
"n_positions": 512,
|
209 |
+
"no_repeat_ngram_size": 0,
|
210 |
+
"num_beam_groups": 1,
|
211 |
+
"num_beams": 1,
|
212 |
+
"num_decoder_layers": 12,
|
213 |
+
"num_heads": 12,
|
214 |
+
"num_layers": 12,
|
215 |
+
"num_return_sequences": 1,
|
216 |
+
"output_attentions": false,
|
217 |
+
"output_hidden_states": false,
|
218 |
+
"output_past": true,
|
219 |
+
"output_scores": false,
|
220 |
+
"pad_token_id": 0,
|
221 |
+
"prefix": null,
|
222 |
+
"problem_type": null,
|
223 |
+
"pruned_heads": {},
|
224 |
+
"relative_attention_max_distance": 128,
|
225 |
+
"relative_attention_num_buckets": 32,
|
226 |
+
"remove_invalid_values": false,
|
227 |
+
"repetition_penalty": 1.0,
|
228 |
+
"return_dict": true,
|
229 |
+
"return_dict_in_generate": false,
|
230 |
+
"sep_token_id": null,
|
231 |
+
"suppress_tokens": null,
|
232 |
+
"task_specific_params": {
|
233 |
+
"summarization": {
|
234 |
+
"early_stopping": true,
|
235 |
+
"length_penalty": 2.0,
|
236 |
+
"max_length": 200,
|
237 |
+
"min_length": 30,
|
238 |
+
"no_repeat_ngram_size": 3,
|
239 |
+
"num_beams": 4,
|
240 |
+
"prefix": "summarize: "
|
241 |
+
},
|
242 |
+
"translation_en_to_de": {
|
243 |
+
"early_stopping": true,
|
244 |
+
"max_length": 300,
|
245 |
+
"num_beams": 4,
|
246 |
+
"prefix": "translate English to German: "
|
247 |
+
},
|
248 |
+
"translation_en_to_fr": {
|
249 |
+
"early_stopping": true,
|
250 |
+
"max_length": 300,
|
251 |
+
"num_beams": 4,
|
252 |
+
"prefix": "translate English to French: "
|
253 |
+
},
|
254 |
+
"translation_en_to_ro": {
|
255 |
+
"early_stopping": true,
|
256 |
+
"max_length": 300,
|
257 |
+
"num_beams": 4,
|
258 |
+
"prefix": "translate English to Romanian: "
|
259 |
+
}
|
260 |
+
},
|
261 |
+
"temperature": 1.0,
|
262 |
+
"tf_legacy_loss": false,
|
263 |
+
"tie_encoder_decoder": false,
|
264 |
+
"tie_word_embeddings": false,
|
265 |
+
"tokenizer_class": null,
|
266 |
+
"top_k": 50,
|
267 |
+
"top_p": 1.0,
|
268 |
+
"torch_dtype": null,
|
269 |
+
"torchscript": false,
|
270 |
+
"typical_p": 1.0,
|
271 |
+
"use_bfloat16": false,
|
272 |
+
"use_cache": true,
|
273 |
+
"vocab_size": 32128
|
274 |
+
},
|
275 |
+
"torch_dtype": "float32",
|
276 |
+
"transformers_version": "4.40.2",
|
277 |
+
"vocab_size": 32128
|
278 |
+
}
|
checkpoint-120000-epoch-8/generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1025,
|
4 |
+
"decoder_start_token_id": 1025,
|
5 |
+
"do_sample": true,
|
6 |
+
"eos_token_id": 1024,
|
7 |
+
"guidance_scale": 1,
|
8 |
+
"key": 10,
|
9 |
+
"max_length": 2580,
|
10 |
+
"pad_token_id": 1024,
|
11 |
+
"transformers_version": "4.40.2"
|
12 |
+
}
|
checkpoint-120000-epoch-8/optimizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:733b094e78f727fce8a0183cdcfc72f5e2b154ed2934959c320e2465693c9577
|
3 |
+
size 3652769047
|
checkpoint-120000-epoch-8/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce7533373536c757b73a74a2ba6185974c2d35e466e38f37a6781da4031a98e8
|
3 |
+
size 2605239710
|
checkpoint-120000-epoch-8/random_states_0.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a23edacfa0329be5ccd2f08651b598e5c8cd31d1fd8e33a3ed02c60c8a3654a6
|
3 |
+
size 16036
|
checkpoint-120000-epoch-8/random_states_1.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53c4ef324c16e8b4466ddbd1b26ea5df0eab4d6fe281391be521efad9f1c87f3
|
3 |
+
size 16100
|
checkpoint-120000-epoch-8/random_states_2.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44f53b0c4745162bed7c7899526b263264a4d5d5b4f4e2c1bc4b6af765c4b6e1
|
3 |
+
size 16100
|
checkpoint-120000-epoch-8/random_states_3.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e432fe468eb01fa59dcd2d3c7c8969f260b157c4395d35773b847f11a37b12b
|
3 |
+
size 16100
|
checkpoint-120000-epoch-8/random_states_4.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c41036f9a24b7f68c02bf44c037565e222ee8c40516670494732a1645fabb39
|
3 |
+
size 16100
|
checkpoint-120000-epoch-8/random_states_5.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ee6a0009db3cca6c35019eabafa38b2a46def11da55b2c5e140f70974e8ae50
|
3 |
+
size 16100
|
checkpoint-120000-epoch-8/random_states_6.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:525f5729c247c1493b3cf5283900401c86948a7eae7b41979b3784e3efa6b2bb
|
3 |
+
size 16100
|
checkpoint-120000-epoch-8/random_states_7.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b31f40c509348d672e052602f82d0d37f85f9dcadbc107dc7217a8e3e6f3092
|
3 |
+
size 16036
|
checkpoint-120000-epoch-8/scheduler.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a46a1b5d12218eb49696470fb7337ce7c2ac2f6cb2f18a57ba0f1af48738171
|
3 |
+
size 1000
|
starting_point_0.01.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"model_name_or_path": "parler-tts/parler-tts-untrained-600M-cross-attention",
|
3 |
-
"save_to_disk": "/fsx/
|
4 |
"temporary_save_to_disk": "/scratch/tmp_dataset_audio/",
|
5 |
"push_to_hub": true,
|
6 |
|
@@ -10,6 +10,7 @@
|
|
10 |
"prompt_tokenizer_name":"google/flan-t5-base",
|
11 |
|
12 |
"report_to": ["wandb"],
|
|
|
13 |
"overwrite_output_dir": false,
|
14 |
"output_dir": "./",
|
15 |
|
|
|
1 |
{
|
2 |
"model_name_or_path": "parler-tts/parler-tts-untrained-600M-cross-attention",
|
3 |
+
"save_to_disk": "/fsx/sanchit/10k_hours_processed_punctuated",
|
4 |
"temporary_save_to_disk": "/scratch/tmp_dataset_audio/",
|
5 |
"push_to_hub": true,
|
6 |
|
|
|
10 |
"prompt_tokenizer_name":"google/flan-t5-base",
|
11 |
|
12 |
"report_to": ["wandb"],
|
13 |
+
"wandb_run_name": "parler-tts-600M-cross-attention",
|
14 |
"overwrite_output_dir": false,
|
15 |
"output_dir": "./",
|
16 |
|
training/__pycache__/arguments.cpython-311.pyc
CHANGED
Binary files a/training/__pycache__/arguments.cpython-311.pyc and b/training/__pycache__/arguments.cpython-311.pyc differ
|
|
training/__pycache__/data.cpython-311.pyc
CHANGED
Binary files a/training/__pycache__/data.cpython-311.pyc and b/training/__pycache__/data.cpython-311.pyc differ
|
|
training/__pycache__/eval.cpython-311.pyc
CHANGED
Binary files a/training/__pycache__/eval.cpython-311.pyc and b/training/__pycache__/eval.cpython-311.pyc differ
|
|
training/__pycache__/utils.cpython-311.pyc
CHANGED
Binary files a/training/__pycache__/utils.cpython-311.pyc and b/training/__pycache__/utils.cpython-311.pyc differ
|
|
training/arguments.py
CHANGED
@@ -218,7 +218,7 @@ class DataTrainingArguments:
|
|
218 |
metadata={
|
219 |
"help": (
|
220 |
"If set, filter samples with descriptions that are longer than `max_description_token_length` tokens."
|
221 |
-
"Also, used to set maximum
|
222 |
)
|
223 |
},
|
224 |
)
|
@@ -277,6 +277,12 @@ class DataTrainingArguments:
|
|
277 |
default="parler-speech",
|
278 |
metadata={"help": "The name of the wandb project."},
|
279 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
save_to_disk: str = field(
|
281 |
default=None,
|
282 |
metadata={
|
|
|
218 |
metadata={
|
219 |
"help": (
|
220 |
"If set, filter samples with descriptions that are longer than `max_description_token_length` tokens."
|
221 |
+
"Also, used to set maximum description token length if `pad_to_max_length=True`."
|
222 |
)
|
223 |
},
|
224 |
)
|
|
|
277 |
default="parler-speech",
|
278 |
metadata={"help": "The name of the wandb project."},
|
279 |
)
|
280 |
+
wandb_run_name: str = field(
|
281 |
+
default=None,
|
282 |
+
metadata={
|
283 |
+
"help": "If specified, the name of the run. If not specified, wandb will give a random name to this run."
|
284 |
+
},
|
285 |
+
)
|
286 |
save_to_disk: str = field(
|
287 |
default=None,
|
288 |
metadata={
|
training/data.py
CHANGED
@@ -31,7 +31,12 @@ class DataCollatorEncodecWithPadding:
|
|
31 |
audios = [feature[self.audio_column_name]["array"] for feature in features]
|
32 |
len_audio = [len(audio) for audio in audios]
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
batch["len_audio"] = torch.tensor(len_audio).unsqueeze(1)
|
36 |
return batch
|
37 |
|
|
|
31 |
audios = [feature[self.audio_column_name]["array"] for feature in features]
|
32 |
len_audio = [len(audio) for audio in audios]
|
33 |
|
34 |
+
# since resampling has already been performed in the 'load_multiple_datasets' function,
|
35 |
+
# a fixed sampling_rate(44100hz) is passed to the feature_extractor.
|
36 |
+
sampling_rate = self.feature_extractor.sampling_rate
|
37 |
+
batch = self.feature_extractor(
|
38 |
+
audios, sampling_rate=sampling_rate, return_tensors="pt", padding=self.padding, max_length=self.max_length
|
39 |
+
)
|
40 |
batch["len_audio"] = torch.tensor(len_audio).unsqueeze(1)
|
41 |
return batch
|
42 |
|
training/eval.py
CHANGED
@@ -47,8 +47,7 @@ def wer(asr_model_name_or_path, prompts, audios, device, per_device_eval_batch_s
|
|
47 |
normalized_references = []
|
48 |
|
49 |
for pred, ref in zip(transcriptions, prompts):
|
50 |
-
normalizer = english_normalizer
|
51 |
-
|
52 |
norm_ref = normalizer(ref)
|
53 |
if len(norm_ref) > 0:
|
54 |
norm_pred = normalizer(pred["text"])
|
|
|
47 |
normalized_references = []
|
48 |
|
49 |
for pred, ref in zip(transcriptions, prompts):
|
50 |
+
normalizer = english_normalizer if return_language and pred["chunks"][0]["language"] == "english" else basic_normalizer
|
|
|
51 |
norm_ref = normalizer(ref)
|
52 |
if len(norm_ref) > 0:
|
53 |
norm_pred = normalizer(pred["text"])
|
training/run_parler_tts_training.py
CHANGED
@@ -98,9 +98,6 @@ def main():
|
|
98 |
|
99 |
####### A. Preparation
|
100 |
kwargs_handlers = [InitProcessGroupKwargs(timeout=timedelta(minutes=60))]
|
101 |
-
if training_args.torch_compile:
|
102 |
-
# TODO(YL): add more compile modes?
|
103 |
-
kwargs_handlers.append(TorchDynamoPlugin(backend="inductor", mode="default")) # reduce-overhead
|
104 |
|
105 |
accelerator = Accelerator(
|
106 |
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
@@ -129,6 +126,7 @@ def main():
|
|
129 |
"adam_beta2": training_args.adam_beta2,
|
130 |
"temperature": model_args.temperature,
|
131 |
},
|
|
|
132 |
)
|
133 |
|
134 |
# Detecting last checkpoint and eventually continue from last checkpoint
|
@@ -136,7 +134,7 @@ def main():
|
|
136 |
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
137 |
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
138 |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
139 |
-
|
140 |
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
141 |
"Use --overwrite_output_dir to overcome."
|
142 |
)
|
@@ -314,6 +312,7 @@ def main():
|
|
314 |
token=data_args.token,
|
315 |
trust_remote_code=data_args.trust_remote_code,
|
316 |
)
|
|
|
317 |
|
318 |
# enable gradient checkpointing if necessary
|
319 |
if training_args.gradient_checkpointing:
|
@@ -334,8 +333,8 @@ def main():
|
|
334 |
feature_extractor_input_name = feature_extractor.model_input_names[0]
|
335 |
audio_encoder_pad_token_id = config.decoder.pad_token_id
|
336 |
audio_encoder_eos_token_id = config.decoder.eos_token_id
|
337 |
-
audio_encoder_bos_token_id =
|
338 |
-
max_length =
|
339 |
num_codebooks = model.decoder.config.num_codebooks
|
340 |
bandwidth = model_args.bandwidth
|
341 |
|
@@ -538,7 +537,7 @@ def main():
|
|
538 |
logger.info(f"Dataset saved at {data_args.save_to_disk}")
|
539 |
|
540 |
audio_max_length = None
|
541 |
-
if
|
542 |
audio_max_length = max(vectorized_datasets["train"]["target_length"])
|
543 |
with accelerator.main_process_first():
|
544 |
max_sample = vectorized_datasets["train"].filter(
|
@@ -548,6 +547,18 @@ def main():
|
|
548 |
)
|
549 |
audio_max_length = torch.tensor(max_sample[0]["labels"]).shape[1]
|
550 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
# for large datasets it is advised to run the preprocessing on a
|
552 |
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
553 |
# be a timeout when running the script in distributed mode.
|
@@ -670,6 +681,8 @@ def main():
|
|
670 |
checkpoint = last_checkpoint
|
671 |
|
672 |
if accelerator.is_main_process:
|
|
|
|
|
673 |
if training_args.push_to_hub:
|
674 |
api = HfApi(token=training_args.hub_token)
|
675 |
|
@@ -682,8 +695,6 @@ def main():
|
|
682 |
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
|
683 |
if "wandb" not in gitignore:
|
684 |
gitignore.write("wandb\n")
|
685 |
-
elif training_args.output_dir is not None:
|
686 |
-
os.makedirs(training_args.output_dir, exist_ok=True)
|
687 |
accelerator.wait_for_everyone()
|
688 |
|
689 |
# Now save everything to be able to create a single processor later
|
@@ -740,7 +751,13 @@ def main():
|
|
740 |
"do_sample": model_args.do_sample,
|
741 |
"temperature": model_args.temperature,
|
742 |
"max_length": model_args.max_length,
|
|
|
|
|
|
|
|
|
743 |
}
|
|
|
|
|
744 |
|
745 |
# Define gradient update step fn
|
746 |
def train_step(
|
@@ -869,9 +886,11 @@ def main():
|
|
869 |
# safe_serialization=False to avoid shared tensors saving issue (TODO(YL): it's a temporary fix)
|
870 |
# https://github.com/huggingface/transformers/issues/27293#issuecomment-1872560074
|
871 |
accelerator.save_state(output_dir=intermediate_dir, safe_serialization=False)
|
|
|
|
|
872 |
accelerator.wait_for_everyone()
|
873 |
if accelerator.is_main_process:
|
874 |
-
rotate_checkpoints(
|
875 |
training_args.save_total_limit, output_dir=training_args.output_dir, logger=logger
|
876 |
)
|
877 |
|
@@ -886,6 +905,7 @@ def main():
|
|
886 |
folder_path=training_args.output_dir,
|
887 |
commit_message=f"Saving train state of step {cur_step}",
|
888 |
run_as_future=True,
|
|
|
889 |
)
|
890 |
|
891 |
if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
|
|
|
98 |
|
99 |
####### A. Preparation
|
100 |
kwargs_handlers = [InitProcessGroupKwargs(timeout=timedelta(minutes=60))]
|
|
|
|
|
|
|
101 |
|
102 |
accelerator = Accelerator(
|
103 |
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
|
|
126 |
"adam_beta2": training_args.adam_beta2,
|
127 |
"temperature": model_args.temperature,
|
128 |
},
|
129 |
+
init_kwargs={"wandb": {"name": data_args.wandb_run_name}} if data_args.wandb_run_name else {},
|
130 |
)
|
131 |
|
132 |
# Detecting last checkpoint and eventually continue from last checkpoint
|
|
|
134 |
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
135 |
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
136 |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
137 |
+
logger.info(
|
138 |
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
139 |
"Use --overwrite_output_dir to overcome."
|
140 |
)
|
|
|
312 |
token=data_args.token,
|
313 |
trust_remote_code=data_args.trust_remote_code,
|
314 |
)
|
315 |
+
generation_config = model.generation_config
|
316 |
|
317 |
# enable gradient checkpointing if necessary
|
318 |
if training_args.gradient_checkpointing:
|
|
|
333 |
feature_extractor_input_name = feature_extractor.model_input_names[0]
|
334 |
audio_encoder_pad_token_id = config.decoder.pad_token_id
|
335 |
audio_encoder_eos_token_id = config.decoder.eos_token_id
|
336 |
+
audio_encoder_bos_token_id = generation_config.decoder_start_token_id
|
337 |
+
max_length = generation_config.max_length
|
338 |
num_codebooks = model.decoder.config.num_codebooks
|
339 |
bandwidth = model_args.bandwidth
|
340 |
|
|
|
537 |
logger.info(f"Dataset saved at {data_args.save_to_disk}")
|
538 |
|
539 |
audio_max_length = None
|
540 |
+
if padding == "max_length":
|
541 |
audio_max_length = max(vectorized_datasets["train"]["target_length"])
|
542 |
with accelerator.main_process_first():
|
543 |
max_sample = vectorized_datasets["train"].filter(
|
|
|
547 |
)
|
548 |
audio_max_length = torch.tensor(max_sample[0]["labels"]).shape[1]
|
549 |
|
550 |
+
if training_args.group_by_length:
|
551 |
+
# apply a simple heuristic to take into account audio and text lengths
|
552 |
+
def add_target_lengths(target_length, prompt, description):
|
553 |
+
return {"target_length": target_length + len(prompt) + len(description)}
|
554 |
+
|
555 |
+
with accelerator.main_process_first():
|
556 |
+
vectorized_datasets = vectorized_datasets.map(
|
557 |
+
add_target_lengths,
|
558 |
+
num_proc=num_workers,
|
559 |
+
input_columns=["target_length", "prompt_input_ids", "input_ids"],
|
560 |
+
)
|
561 |
+
|
562 |
# for large datasets it is advised to run the preprocessing on a
|
563 |
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
564 |
# be a timeout when running the script in distributed mode.
|
|
|
681 |
checkpoint = last_checkpoint
|
682 |
|
683 |
if accelerator.is_main_process:
|
684 |
+
if training_args.output_dir is not None:
|
685 |
+
os.makedirs(training_args.output_dir, exist_ok=True)
|
686 |
if training_args.push_to_hub:
|
687 |
api = HfApi(token=training_args.hub_token)
|
688 |
|
|
|
695 |
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
|
696 |
if "wandb" not in gitignore:
|
697 |
gitignore.write("wandb\n")
|
|
|
|
|
698 |
accelerator.wait_for_everyone()
|
699 |
|
700 |
# Now save everything to be able to create a single processor later
|
|
|
751 |
"do_sample": model_args.do_sample,
|
752 |
"temperature": model_args.temperature,
|
753 |
"max_length": model_args.max_length,
|
754 |
+
# Because of the delayed pattern mask, generation might stop earlier because of unexpected behaviour
|
755 |
+
# on the first tokens of the codebooks that are delayed.
|
756 |
+
# This fix the issue.
|
757 |
+
"min_new_tokens": num_codebooks + 1,
|
758 |
}
|
759 |
+
for key in gen_kwargs:
|
760 |
+
generation_config.key = gen_kwargs[key]
|
761 |
|
762 |
# Define gradient update step fn
|
763 |
def train_step(
|
|
|
886 |
# safe_serialization=False to avoid shared tensors saving issue (TODO(YL): it's a temporary fix)
|
887 |
# https://github.com/huggingface/transformers/issues/27293#issuecomment-1872560074
|
888 |
accelerator.save_state(output_dir=intermediate_dir, safe_serialization=False)
|
889 |
+
config.save_pretrained(intermediate_dir)
|
890 |
+
generation_config.save_pretrained(intermediate_dir)
|
891 |
accelerator.wait_for_everyone()
|
892 |
if accelerator.is_main_process:
|
893 |
+
checkpoints_to_be_deleted = rotate_checkpoints(
|
894 |
training_args.save_total_limit, output_dir=training_args.output_dir, logger=logger
|
895 |
)
|
896 |
|
|
|
905 |
folder_path=training_args.output_dir,
|
906 |
commit_message=f"Saving train state of step {cur_step}",
|
907 |
run_as_future=True,
|
908 |
+
delete_patterns=checkpoints_to_be_deleted,
|
909 |
)
|
910 |
|
911 |
if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
|
training/utils.py
CHANGED
@@ -3,7 +3,7 @@ import re
|
|
3 |
import shutil
|
4 |
from pathlib import Path
|
5 |
from dataclasses import field
|
6 |
-
from typing import Dict, List
|
7 |
|
8 |
import torch
|
9 |
from wandb import Audio
|
@@ -44,7 +44,7 @@ def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[
|
|
44 |
return checkpoints_sorted
|
45 |
|
46 |
|
47 |
-
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint", logger=None) -> None:
|
48 |
"""Helper function to delete old checkpoints."""
|
49 |
if save_total_limit is None or save_total_limit <= 0:
|
50 |
return
|
@@ -58,6 +58,8 @@ def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix
|
|
58 |
for checkpoint in checkpoints_to_be_deleted:
|
59 |
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
|
60 |
shutil.rmtree(checkpoint, ignore_errors=True)
|
|
|
|
|
61 |
|
62 |
|
63 |
def log_metric(
|
|
|
3 |
import shutil
|
4 |
from pathlib import Path
|
5 |
from dataclasses import field
|
6 |
+
from typing import Dict, List, Union
|
7 |
|
8 |
import torch
|
9 |
from wandb import Audio
|
|
|
44 |
return checkpoints_sorted
|
45 |
|
46 |
|
47 |
+
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint", logger=None) -> Union[List, None]:
|
48 |
"""Helper function to delete old checkpoints."""
|
49 |
if save_total_limit is None or save_total_limit <= 0:
|
50 |
return
|
|
|
58 |
for checkpoint in checkpoints_to_be_deleted:
|
59 |
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
|
60 |
shutil.rmtree(checkpoint, ignore_errors=True)
|
61 |
+
checkpoints_to_be_deleted = [f"*{Path(checkpoint).absolute().name}*" for checkpoint in checkpoints_to_be_deleted]
|
62 |
+
return checkpoints_to_be_deleted
|
63 |
|
64 |
|
65 |
def log_metric(
|