--- license: mit base_model: gpt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: gmra_model_gpt2_11082023T140034 results: [] --- # gmra_model_gpt2_11082023T140034 This model is a fine-tuned version of [gpt2](https://huggingface.co./gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3032 - Accuracy: 0.8937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 71 | 0.7347 | 0.7487 | | No log | 1.99 | 142 | 0.4817 | 0.8251 | | No log | 2.99 | 213 | 0.4200 | 0.8533 | | No log | 4.0 | 285 | 0.4045 | 0.8524 | | No log | 5.0 | 356 | 0.3576 | 0.8761 | | No log | 5.99 | 427 | 0.3160 | 0.8875 | | No log | 6.99 | 498 | 0.2928 | 0.8998 | | 0.734 | 8.0 | 570 | 0.3118 | 0.8910 | | 0.734 | 9.0 | 641 | 0.3101 | 0.8893 | | 0.734 | 9.96 | 710 | 0.3032 | 0.8937 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3