File size: 5,377 Bytes
23e3b99
 
 
 
 
 
69a00c3
 
23e3b99
69a00c3
 
23e3b99
 
400d759
69a00c3
 
 
 
 
 
b84f394
b7e07f4
 
 
 
 
 
 
 
 
 
 
0e6122b
b7e07f4
 
 
69a00c3
 
 
400d759
69a00c3
 
 
 
 
 
23e3b99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a00c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- generated_from_trainer
model-index:
- name: >-
    home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/output_llama3_8b_gpt_4o_ru
  results: []
datasets:
- ruslandev/tagengo-rus-gpt-4o
---

# Llama-3 8B GPT-4o-RU1.0

[[Dataset]](https://huggingface.co./datasets/ruslandev/tagengo-rus-gpt-4o)

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct).
The idea behind this model is to train on a dataset derived from a smaller subset of the [tagengo-gpt4](https://huggingface.co./datasets/lightblue/tagengo-gpt4), but with improved data quality.
I tried to achieve higher data quality by prompting GPT-4o, the latest OpenAI's LLM with better multilingual capabilities. The training objective is primarily focused on the Russian language (80% of the training examples).
After training for 1 epoch on 2 NVIDIA A100 the model shows promising results on the MT-Bench evaluation benchmark, surpassing GPT-3.5-turbo and being on par with [Suzume](https://huggingface.co./lightblue/suzume-llama-3-8B-multilingual) in Russian language scores, 
even though the latter is trained on 8x bigger and more diverse dataset.

## How to use

The easiest way to use this model on your own computer is to use the GGUF version of this model ([ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf](https://huggingface.co./ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf)) using a program such as [llama.cpp](https://github.com/ggerganov/llama.cpp).
If you want to use this model directly with the Huggingface Transformers stack, I recommend using my framework [gptchain](https://github.com/RuslanPeresy/gptchain).

```
git clone https://github.com/RuslanPeresy/gptchain.git
cd gptchain
pip install -r requirements-train.txt
python gptchain.py chat -m ruslandev/llama-3-8b-gpt-4o-ru1.0 \
	--chatml true \
	-q '[{"from": "human", "value": "Из чего состоит нейронная сеть?"}]'
```

## Evaluation scores

I achieved the following scores on Ru/En MT-Bench:
|            |meta-llama/Meta-Llama-3-8B-Instruct | ruslandev/llama-3-8b-gpt-4o-ru1.0 | lightblue/suzume-llama-3-8B-multilingual | Nexusflow/Starling-LM-7B-beta | gpt-3.5-turbo |
|:----------:|:----------------------------------:|:---------------------------------:|:----------------------------------------:|:-----------------------------:|:-------------:|
| Russian 🇷🇺 | NaN                                | 8.12                              | 8.19                                     | 8.06                          | 7.94          |
| English 🇺🇸 | 7.98                               | 8.01                              | 7.73                                     | 7.92                          | 8.26          |

## Training procedure

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer  # PreTrainedTokenizerFast

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: ruslandev/tagengo-rus-gpt-4o
    type: sharegpt
    conversation: llama-3
dataset_prepared_path: /home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/prepared_tagengo_rus
val_set_size: 0.01
output_dir: /home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/output_llama3_8b_gpt_4o_ru

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

use_wandb: false
#wandb_project: axolotl
#wandb_entity: wandb_entity
#wandb_name: llama_3_8b_gpt_4o_ru

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /home/ubuntu/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>

```

</details><br>

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1347        | 0.016 | 1    | 1.1086          |
| 0.916         | 0.208 | 13   | 0.8883          |
| 0.8494        | 0.416 | 26   | 0.8072          |
| 0.8657        | 0.624 | 39   | 0.7814          |
| 0.8077        | 0.832 | 52   | 0.7702          |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1