--- library_name: stable-baselines3 tags: - ALE/IceHockey-v5 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: ALE/IceHockey-v5 type: ALE/IceHockey-v5 metrics: - type: mean_reward value: -14.10 +/- 3.75 name: mean_reward verified: false --- # **DQN** Agent playing **ALE/IceHockey-v5** This is a trained model of a **DQN** agent playing **ALE/IceHockey-v5** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env ALE/IceHockey-v5 -orga rudder-tejas-dive -f logs/ python -m rl_zoo3.enjoy --algo dqn --env ALE/IceHockey-v5 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env ALE/IceHockey-v5 -orga rudder-tejas-dive -f logs/ python -m rl_zoo3.enjoy --algo dqn --env ALE/IceHockey-v5 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env ALE/IceHockey-v5 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env ALE/IceHockey-v5 -f logs/ -orga rudder-tejas-dive ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 50000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.001), ('learning_starts', 10000), ('n_timesteps', 300000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```