Add ZipNN structure
Browse files
README.md
CHANGED
@@ -7,7 +7,62 @@ pipeline_tag: text-generation
|
|
7 |
tags:
|
8 |
- nlp
|
9 |
library_name: transformers
|
|
|
|
|
10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
<p align="left">
|
13 |
<a href="https://go.upstage.ai/3Xk9J6X">
|
@@ -50,9 +105,13 @@ Below is an example inference code that details loading the model, applying the
|
|
50 |
# Load model
|
51 |
import torch
|
52 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
model = AutoModelForCausalLM.from_pretrained(
|
55 |
-
"
|
56 |
device_map="cuda",
|
57 |
torch_dtype="auto",
|
58 |
trust_remote_code=True,
|
|
|
7 |
tags:
|
8 |
- nlp
|
9 |
library_name: transformers
|
10 |
+
base_model:
|
11 |
+
- upstage/solar-pro-preview-instruct
|
12 |
---
|
13 |
+
# Disclaimer and Requirements
|
14 |
+
|
15 |
+
This model is a clone of [**upstage/solar-pro-preview-instruct**](https://huggingface.co/upstage/solar-pro-preview-instruct) compressed using ZipNN. Compressed losslessly to 67% its original size, ZipNN saved ~15GB in storage and potentially ~40TB in data transfer **monthly**.
|
16 |
+
|
17 |
+
### Requirement
|
18 |
+
|
19 |
+
In order to use the model, ZipNN is necessary:
|
20 |
+
```bash
|
21 |
+
pip install zipnn
|
22 |
+
```
|
23 |
+
### Use This Model
|
24 |
+
```python
|
25 |
+
# Use a pipeline as a high-level helper
|
26 |
+
from transformers import pipeline
|
27 |
+
from zipnn import zipnn_hf
|
28 |
+
|
29 |
+
zipnn_hf()
|
30 |
+
|
31 |
+
messages = [
|
32 |
+
{"role": "user", "content": "Who are you?"},
|
33 |
+
]
|
34 |
+
pipe = pipeline("text-generation", model="royleibov/solar-pro-preview-instruct-ZipNN-Compressed")
|
35 |
+
pipe(messages)
|
36 |
+
```
|
37 |
+
```python
|
38 |
+
# Load model directly
|
39 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
40 |
+
from zipnn import zipnn_hf
|
41 |
+
|
42 |
+
zipnn_hf()
|
43 |
+
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("royleibov/solar-pro-preview-instruct-ZipNN-Compressed")
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
"royleibov/solar-pro-preview-instruct-ZipNN-Compressed",
|
47 |
+
device_map="cuda",
|
48 |
+
torch_dtype="auto",
|
49 |
+
trust_remote_code=True,
|
50 |
+
)
|
51 |
+
```
|
52 |
+
### ZipNN
|
53 |
+
ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.
|
54 |
+
|
55 |
+
To compress the cached model, simply run:
|
56 |
+
```bash
|
57 |
+
python zipnn_compress_path.py safetensors --model royleibov/solar-pro-preview-instruct-ZipNN-Compressed --hf_cache
|
58 |
+
```
|
59 |
+
|
60 |
+
The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).
|
61 |
+
|
62 |
+
To decompress manualy, simply run:
|
63 |
+
```bash
|
64 |
+
python zipnn_decompress_path.py --model royleibov/solar-pro-preview-instruct-ZipNN-Compressed --hf_cache
|
65 |
+
```
|
66 |
|
67 |
<p align="left">
|
68 |
<a href="https://go.upstage.ai/3Xk9J6X">
|
|
|
105 |
# Load model
|
106 |
import torch
|
107 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
108 |
+
from zipnn import zipnn_hf
|
109 |
+
|
110 |
+
zipnn_hf()
|
111 |
+
|
112 |
+
tokenizer = AutoTokenizer.from_pretrained("royleibov/solar-pro-preview-instruct-ZipNN-Compressed")
|
113 |
model = AutoModelForCausalLM.from_pretrained(
|
114 |
+
"royleibov/solar-pro-preview-instruct-ZipNN-Compressed",
|
115 |
device_map="cuda",
|
116 |
torch_dtype="auto",
|
117 |
trust_remote_code=True,
|