File size: 7,607 Bytes
a32debd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
---
license: apache-2.0
base_model: Qwen/Qwen2-1.5B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
datasets:
- Replete-AI/code_bagel_hermes-2.5
- Replete-AI/code_bagel
- Replete-AI/OpenHermes-2.5-Uncensored
- teknium/OpenHermes-2.5
- layoric/tiny-codes-alpaca
- glaiveai/glaive-code-assistant-v3
- ajibawa-2023/Code-290k-ShareGPT
- TIGER-Lab/MathInstruct
- chargoddard/commitpack-ft-instruct-rated
- iamturun/code_instructions_120k_alpaca
- ise-uiuc/Magicoder-Evol-Instruct-110K
- cognitivecomputations/dolphin-coder
- nickrosh/Evol-Instruct-Code-80k-v1
- coseal/CodeUltraFeedback_binarized
- glaiveai/glaive-function-calling-v2
- CyberNative/Code_Vulnerability_Security_DPO
- jondurbin/airoboros-2.2
- camel-ai
- lmsys/lmsys-chat-1m
- CollectiveCognition/chats-data-2023-09-22
- CoT-Alpaca-GPT4
- WizardLM/WizardLM_evol_instruct_70k
- WizardLM/WizardLM_evol_instruct_V2_196k
- teknium/GPT4-LLM-Cleaned
- GPTeacher
- OpenGPT
- meta-math/MetaMathQA
- Open-Orca/SlimOrca
- garage-bAInd/Open-Platypus
- anon8231489123/ShareGPT_Vicuna_unfiltered
- Unnatural-Instructions-GPT4
model-index:
- name: Replete-Coder-llama3-8b
  results:
  - task:
      name: HumanEval
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.35365853658536583
      verified: True
  - task:
      name: AI2 Reasoning Challenge
      type: text-generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: accuracy
      value: 
      name: normalized accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: accuracy
      value: 
      name: normalized accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: accuracy
      value: 
      name: accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: multiple_choice_accuracy
      value: 
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: accuracy
      value: 
      name: accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard
  - task:
      name: Text Generation
      type: text-generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: accuracy
      value: 
      name: accuracy
    source:
      url: https://www.placeholderurl.com
      name: Open LLM Leaderboard

---
# Replete-Coder-Qwen2-1.5b
Finetuned by: Rombodawg
### More than just a coding model!
Although Replete-Coder has amazing coding capabilities, its trained on vaste amount of non-coding data, fully cleaned and uncensored. Dont just use it for coding, use it for all your needs! We are truly trying to make the GPT killer!
![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/-0dERC793D9XeFsJ9uHbx.png)

Thank you to TensorDock for sponsoring Replete-Coder-llama3-8b and Replete-Coder-Qwen2-1.5b
you can check out their website for cloud compute rental below. 
- https://tensordock.com
__________________________________________________________________________________________________
Replete-Coder-Qwen2-1.5b is a general purpose model that is specially trained in coding in over 100 coding languages. The data used to train the model contains 25% non-code instruction data and 75% coding instruction data totaling up to 3.9 million lines, roughly 1 billion tokens, or 7.27gb of instruct data. The data used to train this model was 100% uncensored, then fully deduplicated, before training happened.

The Replete-Coder models (including Replete-Coder-llama3-8b and Replete-Coder-Qwen2-1.5b) feature the following:

- Advanced coding capabilities in over 100 coding languages
- Advanced code translation (between languages)
- Security and vulnerability prevention related coding capabilities
- General purpose use
- Uncensored use
- Function calling
- Advanced math use
- Use on low end (8b) and mobile (1.5b) platforms

Notice: Replete-Coder series of models are fine-tuned on a context window of 8192 tokens. Performance past this context window is not guaranteed.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/JNGVmzaZC30xrvLI1D7pp.png)
_________________________________________________________________________________________________

You can find the 25% non-coding instruction below:

-  https://huggingface.co./datasets/Replete-AI/OpenHermes-2.5-Uncensored

And the 75% coding specific instruction data below:

- https://huggingface.co./datasets/Replete-AI/code_bagel

These two datasets were combined to create the final dataset for training, which is linked below:

- https://huggingface.co./datasets/Replete-AI/code_bagel_hermes-2.5
__________________________________________________________________________________________________
## Prompt Template: ChatML
```
<|im_start|>system
{}<|im_end|>

<|im_start|>user
{}<|im_end|>

<|im_start|>assistant
{}
```
Note: The system prompt varies in training data, but the most commonly used one is:
```
Below is an instruction that describes a task, Write a response that appropriately completes the request.
```
End token:
```
<|endoftext|>
```
__________________________________________________________________________________________________
Thank you to the community for your contributions to the Replete-AI/code_bagel_hermes-2.5 dataset. Without the participation of so many members making their datasets free and open source for any to use, this amazing AI model wouldn't be possible.

Extra special thanks to Teknium for the Open-Hermes-2.5 dataset and jondurbin for the bagel dataset and the naming idea for the code_bagel series of datasets. You can find both of their huggingface accounts linked below:

- https://huggingface.co./teknium
- https://huggingface.co./jondurbin

Another special thanks to unsloth for being the main method of training for Replete-Coder. Bellow you can find their github, as well as the special Replete-Ai secret sause (Unsloth + Qlora + Galore) colab code document that was used to train this model.

- https://github.com/unslothai/unsloth
- https://colab.research.google.com/drive/1eXGqy5M--0yW4u0uRnmNgBka-tDk2Li0?usp=sharing
__________________________________________________________________________________________________

## Join the Replete-Ai discord! We are a great and Loving community!

- https://discord.gg/ZZbnsmVnjD