romariov commited on
Commit
838a54c
·
verified ·
1 Parent(s): 3a8bee7

Push my LunarLander model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 274.45 +/- 21.46
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f746fe62170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f746fe62200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f746fe62290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f746fe62320>", "_build": "<function ActorCriticPolicy._build at 0x7f746fe623b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f746fe62440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f746fe624d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f746fe62560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f746fe625f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f746fe62680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f746fe62710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f746fe627a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f741529e4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730189123463226561, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPvFj3YYLo+W1novWt8nr6ehey8JnOmvQAAAAAAAAAAGkEPvkvocj96vJW9+qXyvt2UUb5FdqA9AAAAAAAAAABAaF8+mwGhP8YSHT8pERK/kn6wPuTbAT4AAAAAAAAAAJrDQTwpl1W8z8IZPCQdtjwl1bK9GgmTPQAAgD8AAIA/ANy3vQ8b1T61w9M98BPGvvGiSbwjOOQ9AAAAAAAAAACAV7W96Wb8Pu6aDD5hltu+is3dvLsDXT0AAAAAAAAAAGYO4D3AHeI+Tjwbvh0srr54yo88iwK5vQAAAAAAAAAAmjlnOhnLkj6+NNy9kgrEvqUeZL3k60i9AAAAAAAAAADNvdy84VSfuha9ODP2RpavpCJwuntPzrMAAIA/AACAP83VPD5mwCA/xQv3vWzf5b7LaQ8+gPlfvgAAAAAAAAAAzT6ePK7DyLoS2O26lHiQPC9YCjsgwXq9AACAPwAAgD/1po++O42cP4DbCL9CcBG/dufqvuOTYL4AAAAAAAAAAJrtPDxcjyW6rFyJOHeyLjNsUXU7XFWgtwAAgD8AAIA/zcSBvUjxj7pHjLOzhX9ULvr67TrYFsUzAACAPwAAgD/GYTY+eMiQPjoVkL6csom+X21UvGWvVb0AAAAAAAAAAP2Poz530bk+K3JlvktTvb7EVGE+2w6KvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKZi4OMERuMAWyUTQYBjAF0lEdAlIi9K7I1cnV9lChoBkdAcW9qxkd3jmgHTQEBaAhHQJSJQ9s7+1l1fZQoaAZHQG3IQ9JSR8toB0v8aAhHQJSJf8IiTt91fZQoaAZHQG+gN/FzdUNoB0vtaAhHQJSLjlLeyiV1fZQoaAZHQHGd/QjUuthoB00rAWgIR0CUi7jMFEApdX2UKGgGR0BzRjAnDziCaAdL8WgIR0CUi9feDWbxdX2UKGgGR0BxhsWdmQKbaAdL72gIR0CUjF5yU9pzdX2UKGgGR0ByTLszEaVEaAdL7mgIR0CUjImseXAudX2UKGgGR0BxcqSOinHeaAdNGwFoCEdAlI0KhDgIhXV9lChoBkdAc2hRMvh60WgHS/toCEdAlI2fKhcqv3V9lChoBkdAc3CHmRvFWGgHTQoBaAhHQJSOoO2AoXt1fZQoaAZHQHM8LhBJI2BoB0v8aAhHQJSO2t1ZDAt1fZQoaAZHQHDPVvddmg9oB0v6aAhHQJSPsC1Z1V51fZQoaAZHQHEdZid8RcxoB00FAWgIR0CUj9jaPCEYdX2UKGgGR0Bw0wi6g/TtaAdL8mgIR0CUkA4Oc2BKdX2UKGgGR0BvxitcOby6aAdL6GgIR0CUkAo3Jgb7dX2UKGgGR0BxwD48EFGHaAdNKAFoCEdAlJBtXPqs2nV9lChoBkdAcPnT2nKnvWgHS91oCEdAlJGwkcCHRHV9lChoBkdAb43z8P4EfWgHS+toCEdAlJJg9aEBbXV9lChoBkdAcb/90A93bGgHS/NoCEdAlJJ68cuJ13V9lChoBkdAcR19Ujs2N2gHS95oCEdAlJK2UGFBY3V9lChoBkdAaCw98qnWKGgHTegDaAhHQJSS0F4cFQl1fZQoaAZHQHEiZ9E1EVpoB0vWaAhHQJSTBMsYl6Z1fZQoaAZHQHDPyOzY289oB0v5aAhHQJSTP4M4LkV1fZQoaAZHQG8M+JYT0xxoB0vSaAhHQJSUQeNkvsZ1fZQoaAZHQHOaPqgRK6FoB0vaaAhHQJSUpTVDrqt1fZQoaAZHQFvqtK7I1cdoB03oA2gIR0CUlOYuCf6HdX2UKGgGR0Bx/v7CSA6NaAdNEgFoCEdAlJT4BRyfc3V9lChoBkdAcVrZGax5cGgHS+ZoCEdAlJWhIBikPHV9lChoBkdAcdTOWSlnAmgHS/NoCEdAlJYUWM0gsHV9lChoBkdAcPflKK5082gHS+5oCEdAlJYlEy+HrXV9lChoBkdAcOJIT4+KTGgHS/FoCEdAlJaOuFHrhXV9lChoBkdAcRuh1DBuXWgHTRoBaAhHQJSot09yLht1fZQoaAZHQHHprY5DJEJoB0vjaAhHQJSo5mEoOQR1fZQoaAZHQHKWeO0b961oB0vnaAhHQJSphWq94/x1fZQoaAZHQHDmMYht+CtoB0v+aAhHQJSqKYoiLVF1fZQoaAZHQHJsYX40uUVoB0v3aAhHQJSqfBsQ/X51fZQoaAZHQHKHsGcFyJdoB00DAWgIR0CUq0ZG8VYZdX2UKGgGR0BvPPFHavicaAdNIgFoCEdAlKunRoh6jXV9lChoBkdAcKPFy7wrlWgHS9RoCEdAlKuyK77KrHV9lChoBkdAcihRwZOzp2gHS9NoCEdAlKwbNwBHTnV9lChoBkdAcWQNliBoVWgHTTcBaAhHQJSsem65Gz91fZQoaAZHQG29lv60pmVoB00IAWgIR0CUrOSBbwBpdX2UKGgGR0BwP9n9NvfkaAdL72gIR0CUrp5qM3qBdX2UKGgGR0BwxwqXnhbXaAdL3WgIR0CUrp6yjYZmdX2UKGgGR0BygJRP420iaAdNJwFoCEdAlK7PdyksSXV9lChoBkdAcOeRdhRZU2gHTQ4BaAhHQJSu9tFa0Qd1fZQoaAZHQG5cBY3eenRoB0vXaAhHQJSvdaSs8xN1fZQoaAZHQHCUhBu4wytoB00kAWgIR0CUsElGgBcSdX2UKGgGR0BwIKmrKeTWaAdNCwFoCEdAlLEIIjW07nV9lChoBkdAcyieBxxT9GgHS9hoCEdAlLHnN1QqJHV9lChoBkdAbZiKl54W12gHS+VoCEdAlLHvI8yN43V9lChoBkdAb6Ye5Fw1i2gHS85oCEdAlLJYrrgO0HV9lChoBkdAcjYz67/XG2gHTRYBaAhHQJSytWIXTE11fZQoaAZHQHBobmMfigloB0vnaAhHQJSzhSFXaJ11fZQoaAZHQHCAFloUSIxoB0v0aAhHQJS0ak1uR9x1fZQoaAZHQHMGotlI3BJoB00DAWgIR0CUtH7JnxrjdX2UKGgGR0Bzq67J4jbBaAdNBgFoCEdAlLVSwB5ooXV9lChoBkdAcSdDc/MW42gHS/1oCEdAlLVpPuXu3XV9lChoBkdAcnX/cnE2pGgHS9doCEdAlLWw0j1PFnV9lChoBkdAcf+rOZ9d/2gHS+xoCEdAlLYmUnogWHV9lChoBkdAclMWxyGSIWgHS+ZoCEdAlLYlcD8tPHV9lChoBkdAcZZosqaw2WgHS/JoCEdAlLaGV3Ux23V9lChoBkdAcbZOnVG0/mgHS+hoCEdAlLasyrPt2XV9lChoBkdAcM7+7lJYkmgHS+FoCEdAlLcBMajveHV9lChoBkdAcg/SUTtb92gHS+VoCEdAlLeIHs1KoXV9lChoBkdAcrKuy/sVtWgHS95oCEdAlLftKqXF+HV9lChoBkdAclILdepn6GgHS+BoCEdAlLf2Mju8b3V9lChoBkdAcQ/Lsrupj2gHS9VoCEdAlLjsBQvYe3V9lChoBkdAcSgAzpHI62gHS/toCEdAlLj2FSKm9HV9lChoBkdAcr9Rp1zQu2gHS8NoCEdAlLkS8OCoTHV9lChoBkdAccgu6ErXlWgHS85oCEdAlLoDQAuIynV9lChoBkdAcPtN5MURF2gHS+loCEdAlLn+zY287XV9lChoBkdAcR96SDAaemgHTSQBaAhHQJS6Ky1NQCV1fZQoaAZHQHIRqxcE/0NoB0vuaAhHQJS62u/1xsF1fZQoaAZHQG7Y5Grjo6loB0vmaAhHQJS6/LdN34d1fZQoaAZHQG+9S2Yv38JoB0vlaAhHQJS7b3lCCz11fZQoaAZHQHAgF7Qb+99oB0vuaAhHQJS7pIRRMvh1fZQoaAZHQHBaBz3h4t9oB0vpaAhHQJS75BcAzYV1fZQoaAZHQHEp/r4WUKRoB0vgaAhHQJS8OMJhOQB1fZQoaAZHQHGZxD9fkWBoB00JAWgIR0CUvMRPGhmHdX2UKGgGR0Bw9Pos7MgVaAdL5GgIR0CUvNnvDxb0dX2UKGgGR0Bu0iL2pQ1raAdL32gIR0CUvR6yB06pdX2UKGgGR0BzH85p8F6iaAdL62gIR0CUvWbc45tFdX2UKGgGR0BwOmbTc6/7aAdLz2gIR0CUvZp6hQFcdX2UKGgGR0BwZjEIgNgCaAdL5GgIR0CUvhjzqbBodX2UKGgGR0BxhpC6Ymb9aAdLymgIR0CUvomu1WsBdX2UKGgGR0BwtODwpe/paAdL92gIR0CUvqgCfYjCdX2UKGgGR0BwtamKqGUOaAdL32gIR0CUvxUH6dlNdX2UKGgGR0Bx4EOWjXWfaAdNAAFoCEdAlL/9ugpSaXV9lChoBkdAQEbcKw6hg2gHS5poCEdAlMDJSJj2BnV9lChoBkdAcTqT+NtIkWgHS+ZoCEdAlMDJI1+AmXV9lChoBkdAc3xf+S8rZ2gHTQMBaAhHQJTBB2FFlTZ1fZQoaAZHQHCml/+bVjJoB0vdaAhHQJTBFiUgSvl1fZQoaAZHQHDiBEv0yxloB0vqaAhHQJTBHua4MF51fZQoaAZHQHDd4b0e2eBoB00UAWgIR0CUwUlrM1TBdX2UKGgGR0BwPDQ7cO9WaAdL8GgIR0CUwcmbb1yvdX2UKGgGR0Bw2ekdmxt6aAdL5GgIR0CUwhP0Zm7KdX2UKGgGR0BxJO8scyWSaAdL72gIR0CUwmlqagEmdX2UKGgGR0BzHLjPv8ZUaAdL3GgIR0CUwpHCoCMhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71a6598f11dd23d4295103858d01dcc19eb31949aa784fe41fc7fed8342d3be2
3
+ size 147924
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f746fe62170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f746fe62200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f746fe62290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f746fe62320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f746fe623b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f746fe62440>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f746fe624d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f746fe62560>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f746fe625f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f746fe62680>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f746fe62710>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f746fe627a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f741529e4c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1730189123463226561,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPvFj3YYLo+W1novWt8nr6ehey8JnOmvQAAAAAAAAAAGkEPvkvocj96vJW9+qXyvt2UUb5FdqA9AAAAAAAAAABAaF8+mwGhP8YSHT8pERK/kn6wPuTbAT4AAAAAAAAAAJrDQTwpl1W8z8IZPCQdtjwl1bK9GgmTPQAAgD8AAIA/ANy3vQ8b1T61w9M98BPGvvGiSbwjOOQ9AAAAAAAAAACAV7W96Wb8Pu6aDD5hltu+is3dvLsDXT0AAAAAAAAAAGYO4D3AHeI+Tjwbvh0srr54yo88iwK5vQAAAAAAAAAAmjlnOhnLkj6+NNy9kgrEvqUeZL3k60i9AAAAAAAAAADNvdy84VSfuha9ODP2RpavpCJwuntPzrMAAIA/AACAP83VPD5mwCA/xQv3vWzf5b7LaQ8+gPlfvgAAAAAAAAAAzT6ePK7DyLoS2O26lHiQPC9YCjsgwXq9AACAPwAAgD/1po++O42cP4DbCL9CcBG/dufqvuOTYL4AAAAAAAAAAJrtPDxcjyW6rFyJOHeyLjNsUXU7XFWgtwAAgD8AAIA/zcSBvUjxj7pHjLOzhX9ULvr67TrYFsUzAACAPwAAgD/GYTY+eMiQPjoVkL6csom+X21UvGWvVb0AAAAAAAAAAP2Poz530bk+K3JlvktTvb7EVGE+2w6KvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKZi4OMERuMAWyUTQYBjAF0lEdAlIi9K7I1cnV9lChoBkdAcW9qxkd3jmgHTQEBaAhHQJSJQ9s7+1l1fZQoaAZHQG3IQ9JSR8toB0v8aAhHQJSJf8IiTt91fZQoaAZHQG+gN/FzdUNoB0vtaAhHQJSLjlLeyiV1fZQoaAZHQHGd/QjUuthoB00rAWgIR0CUi7jMFEApdX2UKGgGR0BzRjAnDziCaAdL8WgIR0CUi9feDWbxdX2UKGgGR0BxhsWdmQKbaAdL72gIR0CUjF5yU9pzdX2UKGgGR0ByTLszEaVEaAdL7mgIR0CUjImseXAudX2UKGgGR0BxcqSOinHeaAdNGwFoCEdAlI0KhDgIhXV9lChoBkdAc2hRMvh60WgHS/toCEdAlI2fKhcqv3V9lChoBkdAc3CHmRvFWGgHTQoBaAhHQJSOoO2AoXt1fZQoaAZHQHM8LhBJI2BoB0v8aAhHQJSO2t1ZDAt1fZQoaAZHQHDPVvddmg9oB0v6aAhHQJSPsC1Z1V51fZQoaAZHQHEdZid8RcxoB00FAWgIR0CUj9jaPCEYdX2UKGgGR0Bw0wi6g/TtaAdL8mgIR0CUkA4Oc2BKdX2UKGgGR0BvxitcOby6aAdL6GgIR0CUkAo3Jgb7dX2UKGgGR0BxwD48EFGHaAdNKAFoCEdAlJBtXPqs2nV9lChoBkdAcPnT2nKnvWgHS91oCEdAlJGwkcCHRHV9lChoBkdAb43z8P4EfWgHS+toCEdAlJJg9aEBbXV9lChoBkdAcb/90A93bGgHS/NoCEdAlJJ68cuJ13V9lChoBkdAcR19Ujs2N2gHS95oCEdAlJK2UGFBY3V9lChoBkdAaCw98qnWKGgHTegDaAhHQJSS0F4cFQl1fZQoaAZHQHEiZ9E1EVpoB0vWaAhHQJSTBMsYl6Z1fZQoaAZHQHDPyOzY289oB0v5aAhHQJSTP4M4LkV1fZQoaAZHQG8M+JYT0xxoB0vSaAhHQJSUQeNkvsZ1fZQoaAZHQHOaPqgRK6FoB0vaaAhHQJSUpTVDrqt1fZQoaAZHQFvqtK7I1cdoB03oA2gIR0CUlOYuCf6HdX2UKGgGR0Bx/v7CSA6NaAdNEgFoCEdAlJT4BRyfc3V9lChoBkdAcVrZGax5cGgHS+ZoCEdAlJWhIBikPHV9lChoBkdAcdTOWSlnAmgHS/NoCEdAlJYUWM0gsHV9lChoBkdAcPflKK5082gHS+5oCEdAlJYlEy+HrXV9lChoBkdAcOJIT4+KTGgHS/FoCEdAlJaOuFHrhXV9lChoBkdAcRuh1DBuXWgHTRoBaAhHQJSot09yLht1fZQoaAZHQHHprY5DJEJoB0vjaAhHQJSo5mEoOQR1fZQoaAZHQHKWeO0b961oB0vnaAhHQJSphWq94/x1fZQoaAZHQHDmMYht+CtoB0v+aAhHQJSqKYoiLVF1fZQoaAZHQHJsYX40uUVoB0v3aAhHQJSqfBsQ/X51fZQoaAZHQHKHsGcFyJdoB00DAWgIR0CUq0ZG8VYZdX2UKGgGR0BvPPFHavicaAdNIgFoCEdAlKunRoh6jXV9lChoBkdAcKPFy7wrlWgHS9RoCEdAlKuyK77KrHV9lChoBkdAcihRwZOzp2gHS9NoCEdAlKwbNwBHTnV9lChoBkdAcWQNliBoVWgHTTcBaAhHQJSsem65Gz91fZQoaAZHQG29lv60pmVoB00IAWgIR0CUrOSBbwBpdX2UKGgGR0BwP9n9NvfkaAdL72gIR0CUrp5qM3qBdX2UKGgGR0BwxwqXnhbXaAdL3WgIR0CUrp6yjYZmdX2UKGgGR0BygJRP420iaAdNJwFoCEdAlK7PdyksSXV9lChoBkdAcOeRdhRZU2gHTQ4BaAhHQJSu9tFa0Qd1fZQoaAZHQG5cBY3eenRoB0vXaAhHQJSvdaSs8xN1fZQoaAZHQHCUhBu4wytoB00kAWgIR0CUsElGgBcSdX2UKGgGR0BwIKmrKeTWaAdNCwFoCEdAlLEIIjW07nV9lChoBkdAcyieBxxT9GgHS9hoCEdAlLHnN1QqJHV9lChoBkdAbZiKl54W12gHS+VoCEdAlLHvI8yN43V9lChoBkdAb6Ye5Fw1i2gHS85oCEdAlLJYrrgO0HV9lChoBkdAcjYz67/XG2gHTRYBaAhHQJSytWIXTE11fZQoaAZHQHBobmMfigloB0vnaAhHQJSzhSFXaJ11fZQoaAZHQHCAFloUSIxoB0v0aAhHQJS0ak1uR9x1fZQoaAZHQHMGotlI3BJoB00DAWgIR0CUtH7JnxrjdX2UKGgGR0Bzq67J4jbBaAdNBgFoCEdAlLVSwB5ooXV9lChoBkdAcSdDc/MW42gHS/1oCEdAlLVpPuXu3XV9lChoBkdAcnX/cnE2pGgHS9doCEdAlLWw0j1PFnV9lChoBkdAcf+rOZ9d/2gHS+xoCEdAlLYmUnogWHV9lChoBkdAclMWxyGSIWgHS+ZoCEdAlLYlcD8tPHV9lChoBkdAcZZosqaw2WgHS/JoCEdAlLaGV3Ux23V9lChoBkdAcbZOnVG0/mgHS+hoCEdAlLasyrPt2XV9lChoBkdAcM7+7lJYkmgHS+FoCEdAlLcBMajveHV9lChoBkdAcg/SUTtb92gHS+VoCEdAlLeIHs1KoXV9lChoBkdAcrKuy/sVtWgHS95oCEdAlLftKqXF+HV9lChoBkdAclILdepn6GgHS+BoCEdAlLf2Mju8b3V9lChoBkdAcQ/Lsrupj2gHS9VoCEdAlLjsBQvYe3V9lChoBkdAcSgAzpHI62gHS/toCEdAlLj2FSKm9HV9lChoBkdAcr9Rp1zQu2gHS8NoCEdAlLkS8OCoTHV9lChoBkdAccgu6ErXlWgHS85oCEdAlLoDQAuIynV9lChoBkdAcPtN5MURF2gHS+loCEdAlLn+zY287XV9lChoBkdAcR96SDAaemgHTSQBaAhHQJS6Ky1NQCV1fZQoaAZHQHIRqxcE/0NoB0vuaAhHQJS62u/1xsF1fZQoaAZHQG7Y5Grjo6loB0vmaAhHQJS6/LdN34d1fZQoaAZHQG+9S2Yv38JoB0vlaAhHQJS7b3lCCz11fZQoaAZHQHAgF7Qb+99oB0vuaAhHQJS7pIRRMvh1fZQoaAZHQHBaBz3h4t9oB0vpaAhHQJS75BcAzYV1fZQoaAZHQHEp/r4WUKRoB0vgaAhHQJS8OMJhOQB1fZQoaAZHQHGZxD9fkWBoB00JAWgIR0CUvMRPGhmHdX2UKGgGR0Bw9Pos7MgVaAdL5GgIR0CUvNnvDxb0dX2UKGgGR0Bu0iL2pQ1raAdL32gIR0CUvR6yB06pdX2UKGgGR0BzH85p8F6iaAdL62gIR0CUvWbc45tFdX2UKGgGR0BwOmbTc6/7aAdLz2gIR0CUvZp6hQFcdX2UKGgGR0BwZjEIgNgCaAdL5GgIR0CUvhjzqbBodX2UKGgGR0BxhpC6Ymb9aAdLymgIR0CUvomu1WsBdX2UKGgGR0BwtODwpe/paAdL92gIR0CUvqgCfYjCdX2UKGgGR0BwtamKqGUOaAdL32gIR0CUvxUH6dlNdX2UKGgGR0Bx4EOWjXWfaAdNAAFoCEdAlL/9ugpSaXV9lChoBkdAQEbcKw6hg2gHS5poCEdAlMDJSJj2BnV9lChoBkdAcTqT+NtIkWgHS+ZoCEdAlMDJI1+AmXV9lChoBkdAc3xf+S8rZ2gHTQMBaAhHQJTBB2FFlTZ1fZQoaAZHQHCml/+bVjJoB0vdaAhHQJTBFiUgSvl1fZQoaAZHQHDiBEv0yxloB0vqaAhHQJTBHua4MF51fZQoaAZHQHDd4b0e2eBoB00UAWgIR0CUwUlrM1TBdX2UKGgGR0BwPDQ7cO9WaAdL8GgIR0CUwcmbb1yvdX2UKGgGR0Bw2ekdmxt6aAdL5GgIR0CUwhP0Zm7KdX2UKGgGR0BxJO8scyWSaAdL72gIR0CUwmlqagEmdX2UKGgGR0BzHLjPv8ZUaAdL3GgIR0CUwpHCoCMhdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2738987de492644564cb9320b709db3017db97555b05039a20f48969ab59b7fd
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c2f77063aba771152ca11627568f32f2489e2933945476b51162eb4b8315026
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 274.4514246, "std_reward": 21.457627870699103, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-29T08:36:17.984309"}