first commit
Browse files- README.md +68 -0
- config.json +26 -0
- pytorch_model.bin +3 -0
- rinna.png +0 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ja
|
3 |
+
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
|
4 |
+
tags:
|
5 |
+
- ja
|
6 |
+
- japanese
|
7 |
+
- gpt
|
8 |
+
- text-generation
|
9 |
+
- lm
|
10 |
+
- nlp
|
11 |
+
license: mit
|
12 |
+
datasets:
|
13 |
+
- cc100
|
14 |
+
- wikipedia
|
15 |
+
widget:
|
16 |
+
- text: "西田幾多郎は、"
|
17 |
+
---
|
18 |
+
|
19 |
+
# japanese-gpt-1b
|
20 |
+
|
21 |
+
![rinna-icon](./rinna.png)
|
22 |
+
|
23 |
+
This repository provides a 1.3B-parameter Japanese GPT model. The model was trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/)
|
24 |
+
|
25 |
+
# How to use the model
|
26 |
+
|
27 |
+
*NOTE:* Use `T5Tokenizer` to initiate the tokenizer.
|
28 |
+
|
29 |
+
~~~~
|
30 |
+
import torch
|
31 |
+
from transformers import T5Tokenizer, AutoModelForCausalLM
|
32 |
+
|
33 |
+
tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt-1b")
|
34 |
+
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-1b")
|
35 |
+
|
36 |
+
if torch.cuda.is_available():
|
37 |
+
model = model.to("cuda")
|
38 |
+
|
39 |
+
text = "西田幾多郎は、"
|
40 |
+
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
output_ids = model.generate(
|
44 |
+
token_ids.to(model.device),
|
45 |
+
max_length=100,
|
46 |
+
min_length=100,
|
47 |
+
do_sample=True,
|
48 |
+
top_k=500,
|
49 |
+
top_p=0.95,
|
50 |
+
pad_token_id=tokenizer.pad_token_id,
|
51 |
+
bos_token_id=tokenizer.bos_token_id,
|
52 |
+
eos_token_id=tokenizer.eos_token_id,
|
53 |
+
bad_word_ids=[[tokenizer.unk_token_id]]
|
54 |
+
)
|
55 |
+
|
56 |
+
output = tokenizer.decode(output_ids.tolist()[0])
|
57 |
+
print(output)
|
58 |
+
~~~~
|
59 |
+
|
60 |
+
# Model architecture
|
61 |
+
A 24-layer, 2048-hidden-size transformer-based language model.
|
62 |
+
|
63 |
+
# Training
|
64 |
+
The model was trained on [Japanese C4](https://huggingface.co/datasets/allenai/c4), [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective. It reaches around 14 perplexity on a chosen validation set from the same data.
|
65 |
+
# Tokenization
|
66 |
+
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script, and then augmented with emojis and symbols.
|
67 |
+
# Licenese
|
68 |
+
[The MIT license](https://opensource.org/licenses/MIT)
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_fast",
|
3 |
+
"architectures": [
|
4 |
+
"GPT2LMHeadModel"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.1,
|
7 |
+
"bos_token_id": 2,
|
8 |
+
"embd_pdrop": 0.1,
|
9 |
+
"eos_token_id": 3,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"layer_norm_epsilon": 1e-05,
|
13 |
+
"model_type": "gpt2",
|
14 |
+
"n_ctx": 1024,
|
15 |
+
"n_embd": 2048,
|
16 |
+
"n_head": 16,
|
17 |
+
"n_inner": 8192,
|
18 |
+
"n_layer": 24,
|
19 |
+
"n_positions": 1024,
|
20 |
+
"reorder_and_upcast_attn": false,
|
21 |
+
"resid_pdrop": 0.1,
|
22 |
+
"scale_attn_by_inverse_layer_idx": false,
|
23 |
+
"scale_attn_weights": true,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 44928
|
26 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28a4d618d4665790bc0fd941326f8fbd27fa1f5eebbb406c4000dda34653fcab
|
3 |
+
size 2655859801
|
rinna.png
ADDED
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dbbd4ddbe43941051ed35fd44ff0d9d1c00ed345f7fd4d1969df174110f0609
|
3 |
+
size 1044749
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "[PAD]", "extra_ids": 0, "additional_special_tokens": [], "sp_model_kwargs": {}, "bos_token": "<s>", "cls_token": "[CLS]", "sep_token": "[SEP]", "mask_token": "[MASK]", "do_lower_case": false, "tokenizer_class": "T5Tokenizer"}
|