--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized language: - en license: apache-2.0 tags: - mlx widget: - example_title: Fibonacci (Python) messages: - role: system content: You are a chatbot who can help code! - role: user content: Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI. --- # reach-vb/TinyLlama-1.1B-Chat-v1.0-Q4-mlx The Model [reach-vb/TinyLlama-1.1B-Chat-v1.0-Q4-mlx](https://huggingface.co./reach-vb/TinyLlama-1.1B-Chat-v1.0-Q4-mlx) was converted to MLX format from [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0) using mlx-lm version **0.19.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("reach-vb/TinyLlama-1.1B-Chat-v1.0-Q4-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```