img2img-turbo / gradio_canny2image.py
qninhdt's picture
Upload 53 files
0f9e661 verified
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
import gradio as gr
from src.image_prep import canny_from_pil
from src.pix2pix_turbo import Pix2Pix_Turbo
model = Pix2Pix_Turbo("edge_to_image")
def process(input_image, prompt, low_threshold, high_threshold):
# resize to be a multiple of 8
new_width = input_image.width - input_image.width % 8
new_height = input_image.height - input_image.height % 8
input_image = input_image.resize((new_width, new_height))
canny = canny_from_pil(input_image, low_threshold, high_threshold)
with torch.no_grad():
c_t = transforms.ToTensor()(canny).unsqueeze(0).cuda()
output_image = model(c_t, prompt)
output_pil = transforms.ToPILImage()(output_image[0].cpu() * 0.5 + 0.5)
# flippy canny values, map all 0s to 1s and 1s to 0s
canny_viz = 1 - (np.array(canny) / 255)
canny_viz = Image.fromarray((canny_viz * 255).astype(np.uint8))
return canny_viz, output_pil
if __name__ == "__main__":
# load the model
with gr.Blocks() as demo:
gr.Markdown("# Pix2pix-Turbo: **Canny Edge -> Image**")
with gr.Row():
with gr.Column():
input_image = gr.Image(sources="upload", type="pil")
prompt = gr.Textbox(label="Prompt")
low_threshold = gr.Slider(
label="Canny low threshold",
minimum=1,
maximum=255,
value=100,
step=10,
)
high_threshold = gr.Slider(
label="Canny high threshold",
minimum=1,
maximum=255,
value=200,
step=10,
)
run_button = gr.Button(value="Run")
with gr.Column():
result_canny = gr.Image(type="pil")
with gr.Column():
result_output = gr.Image(type="pil")
prompt.submit(
fn=process,
inputs=[input_image, prompt, low_threshold, high_threshold],
outputs=[result_canny, result_output],
)
low_threshold.change(
fn=process,
inputs=[input_image, prompt, low_threshold, high_threshold],
outputs=[result_canny, result_output],
)
high_threshold.change(
fn=process,
inputs=[input_image, prompt, low_threshold, high_threshold],
outputs=[result_canny, result_output],
)
run_button.click(
fn=process,
inputs=[input_image, prompt, low_threshold, high_threshold],
outputs=[result_canny, result_output],
)
demo.queue()
demo.launch(debug=True, share=False)