stable-diffusion-1.5 / SD /attention.py
pt-sk's picture
Upload 11 files
161e2ab verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class SelfAttention(nn.Module):
def __init__(self, n_heads, d_embed, in_proj_bias=True, out_proj_bias=True):
super().__init__()
# This combines the Wq, Wk and Wv matrices into one matrix
self.in_proj = nn.Linear(d_embed, 3 * d_embed, bias=in_proj_bias)
# This one represents the Wo matrix
self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
self.n_heads = n_heads
self.d_head = d_embed // n_heads
def forward(self, x, causal_mask=False):
# x: # (Batch_Size, Seq_Len, Dim)
# (Batch_Size, Seq_Len, Dim)
input_shape = x.shape
# (Batch_Size, Seq_Len, Dim)
batch_size, sequence_length, d_embed = input_shape
# (Batch_Size, Seq_Len, H, Dim / H)
interim_shape = (batch_size, sequence_length, self.n_heads, self.d_head)
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim * 3) -> 3 tensor of shape (Batch_Size, Seq_Len, Dim)
q, k, v = self.in_proj(x).chunk(3, dim=-1)
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, H, Dim / H) -> (Batch_Size, H, Seq_Len, Dim / H)
q = q.view(interim_shape).transpose(1, 2)
k = k.view(interim_shape).transpose(1, 2)
v = v.view(interim_shape).transpose(1, 2)
# (Batch_Size, H, Seq_Len, Dim) @ (Batch_Size, H, Dim, Seq_Len) -> (Batch_Size, H, Seq_Len, Seq_Len)
weight = q @ k.transpose(-1, -2)
if causal_mask:
# Mask where the upper triangle (above the principal diagonal) is 1
mask = torch.ones_like(weight, dtype=torch.bool).triu(1)
# Fill the upper triangle with -inf
weight.masked_fill_(mask, -torch.inf)
# Divide by d_k (Dim / H).
# (Batch_Size, H, Seq_Len, Seq_Len) -> (Batch_Size, H, Seq_Len, Seq_Len)
weight /= math.sqrt(self.d_head)
# (Batch_Size, H, Seq_Len, Seq_Len) -> (Batch_Size, H, Seq_Len, Seq_Len)
weight = F.softmax(weight, dim=-1)
# (Batch_Size, H, Seq_Len, Seq_Len) @ (Batch_Size, H, Seq_Len, Dim / H) -> (Batch_Size, H, Seq_Len, Dim / H)
output = weight @ v
# (Batch_Size, H, Seq_Len, Dim / H) -> (Batch_Size, Seq_Len, H, Dim / H)
output = output.transpose(1, 2)
# (Batch_Size, Seq_Len, H, Dim / H) -> (Batch_Size, Seq_Len, Dim)
output = output.reshape(input_shape)
# (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim)
output = self.out_proj(output)
# (Batch_Size, Seq_Len, Dim)
return output
class CrossAttention(nn.Module):
def __init__(self, n_heads, d_embed, d_cross, in_proj_bias=True, out_proj_bias=True):
super().__init__()
self.q_proj = nn.Linear(d_embed, d_embed, bias=in_proj_bias)
self.k_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
self.v_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
self.n_heads = n_heads
self.d_head = d_embed // n_heads
def forward(self, x, y):
# x (latent): # (Batch_Size, Seq_Len_Q, Dim_Q)
# y (context): # (Batch_Size, Seq_Len_KV, Dim_KV) = (Batch_Size, 77, 768)
input_shape = x.shape
batch_size, sequence_length, d_embed = input_shape
# Divide each embedding of Q into multiple heads such that d_heads * n_heads = Dim_Q
interim_shape = (batch_size, -1, self.n_heads, self.d_head)
# (Batch_Size, Seq_Len_Q, Dim_Q) -> (Batch_Size, Seq_Len_Q, Dim_Q)
q = self.q_proj(x)
# (Batch_Size, Seq_Len_KV, Dim_KV) -> (Batch_Size, Seq_Len_KV, Dim_Q)
k = self.k_proj(y)
# (Batch_Size, Seq_Len_KV, Dim_KV) -> (Batch_Size, Seq_Len_KV, Dim_Q)
v = self.v_proj(y)
# (Batch_Size, Seq_Len_Q, Dim_Q) -> (Batch_Size, Seq_Len_Q, H, Dim_Q / H) -> (Batch_Size, H, Seq_Len_Q, Dim_Q / H)
q = q.view(interim_shape).transpose(1, 2)
# (Batch_Size, Seq_Len_KV, Dim_Q) -> (Batch_Size, Seq_Len_KV, H, Dim_Q / H) -> (Batch_Size, H, Seq_Len_KV, Dim_Q / H)
k = k.view(interim_shape).transpose(1, 2)
# (Batch_Size, Seq_Len_KV, Dim_Q) -> (Batch_Size, Seq_Len_KV, H, Dim_Q / H) -> (Batch_Size, H, Seq_Len_KV, Dim_Q / H)
v = v.view(interim_shape).transpose(1, 2)
# (Batch_Size, H, Seq_Len_Q, Dim_Q / H) @ (Batch_Size, H, Dim_Q / H, Seq_Len_KV) -> (Batch_Size, H, Seq_Len_Q, Seq_Len_KV)
weight = q @ k.transpose(-1, -2)
# (Batch_Size, H, Seq_Len_Q, Seq_Len_KV)
weight /= math.sqrt(self.d_head)
# (Batch_Size, H, Seq_Len_Q, Seq_Len_KV)
weight = F.softmax(weight, dim=-1)
# (Batch_Size, H, Seq_Len_Q, Seq_Len_KV) @ (Batch_Size, H, Seq_Len_KV, Dim_Q / H) -> (Batch_Size, H, Seq_Len_Q, Dim_Q / H)
output = weight @ v
# (Batch_Size, H, Seq_Len_Q, Dim_Q / H) -> (Batch_Size, Seq_Len_Q, H, Dim_Q / H)
output = output.transpose(1, 2).contiguous()
# (Batch_Size, Seq_Len_Q, H, Dim_Q / H) -> (Batch_Size, Seq_Len_Q, Dim_Q)
output = output.view(input_shape)
# (Batch_Size, Seq_Len_Q, Dim_Q) -> (Batch_Size, Seq_Len_Q, Dim_Q)
output = self.out_proj(output)
# (Batch_Size, Seq_Len_Q, Dim_Q)
return output