File size: 6,097 Bytes
56d3072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup & Installation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting requirements.txt\n"
]
}
],
"source": [
"%%writefile requirements.txt\n",
"diffusers==0.2.4"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install -r requirements.txt --upgrade"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Create Custom Handler for Inference Endpoints\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"device(type='cuda')"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"device"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"if device.type != 'cuda':\n",
" raise ValueError(\"need to run on GPU\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting handler.py\n"
]
}
],
"source": [
"%%writefile handler.py\n",
"from typing import Dict, List, Any\n",
"import torch\n",
"from torch import autocast\n",
"from diffusers import StableDiffusionPipeline\n",
"import base64\n",
"from io import BytesIO\n",
"\n",
"\n",
"# set device\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"\n",
"if device.type != 'cuda':\n",
" raise ValueError(\"need to run on GPU\")\n",
"\n",
"class EndpointHandler():\n",
" def __init__(self, path=\"\"):\n",
" # load the optimized model\n",
" self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)\n",
" self.pipe = self.pipe.to(device)\n",
"\n",
"\n",
" def __call__(self, data: Any) -> List[List[Dict[str, float]]]:\n",
" \"\"\"\n",
" Args:\n",
" data (:obj:):\n",
" includes the input data and the parameters for the inference.\n",
" Return:\n",
" A :obj:`dict`:. base64 encoded image\n",
" \"\"\"\n",
" inputs = data.pop(\"inputs\", data)\n",
" \n",
" # run inference pipeline\n",
" with autocast(device.type):\n",
" image = self.pipe(inputs, guidance_scale=7.5)[\"sample\"][0] \n",
" \n",
" # encode image as base 64\n",
" buffered = BytesIO()\n",
" image.save(buffered, format=\"JPEG\")\n",
" img_str = base64.b64encode(buffered.getvalue())\n",
"\n",
" # postprocess the prediction\n",
" return {\"image\": img_str.decode()}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"test custom pipeline"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'1.11.0+cu113'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"torch.__version__"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"ftfy or spacy is not installed using BERT BasicTokenizer instead of ftfy.\n"
]
}
],
"source": [
"from handler import EndpointHandler\n",
"\n",
"# init handler\n",
"my_handler = EndpointHandler(path=\".\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "376de150f16b4b4bb0c3ab8c513de5c0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"0it [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import base64\n",
"from PIL import Image\n",
"from io import BytesIO\n",
"import json\n",
"\n",
"# helper decoder\n",
"def decode_base64_image(image_string):\n",
" base64_image = base64.b64decode(image_string)\n",
" buffer = BytesIO(base64_image)\n",
" return Image.open(buffer)\n",
"\n",
"# prepare sample payload\n",
"request = {\"inputs\": \"a high resulotion image of a macbook\"}\n",
"\n",
"# test the handler\n",
"pred = my_handler(request)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"decode_base64_image(pred[\"image\"]).save(\"sample.jpg\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![test](sample.jpg)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('dev': conda)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|