File size: 2,722 Bytes
e71ff72
cf2d634
 
e71ff72
 
cf2d634
e71ff72
ade1746
cf2d634
 
 
e71ff72
cf2d634
 
 
 
8689a91
cf2d634
 
 
851c891
cf2d634
851c891
cf2d634
8689a91
cf2d634
8689a91
 
 
 
 
 
 
 
 
 
 
 
 
e71ff72
 
 
 
 
cf2d634
e71ff72
cf2d634
ade1746
cf2d634
 
e71ff72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4771df5
e71ff72
 
cf2d634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e71ff72
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
language:
- ta
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Tiny Ta - Bharat Ramanathan
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: ta
      split: test
      args: ta
    metrics:
    - type: wer
      value: 30.102694404742998
      name: Wer
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      config: ta_in
      split: test
    metrics:
    - type: wer
      value: 26.07
      name: WER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Ta - Bharat Ramanathan

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3096
- Wer: 30.1027

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.5622        | 0.2   | 1000  | 0.4460          | 41.4141 |
| 0.4151        | 0.4   | 2000  | 0.3657          | 35.1390 |
| 0.3727        | 0.6   | 3000  | 0.3417          | 33.1723 |
| 0.3519        | 0.8   | 4000  | 0.3252          | 31.9497 |
| 0.3354        | 1.0   | 5000  | 0.3192          | 31.3997 |
| 0.3492        | 0.1   | 6000  | 0.3283          | 31.6966 |
| 0.3229        | 0.2   | 7000  | 0.3211          | 31.1339 |
| 0.3193        | 0.3   | 8000  | 0.3138          | 30.5161 |
| 0.314         | 0.4   | 9000  | 0.3112          | 30.1832 |
| 0.3087        | 0.5   | 10000 | 0.3096          | 30.1027 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2