File size: 2,722 Bytes
e71ff72 cf2d634 e71ff72 cf2d634 e71ff72 ade1746 cf2d634 e71ff72 cf2d634 8689a91 cf2d634 851c891 cf2d634 851c891 cf2d634 8689a91 cf2d634 8689a91 e71ff72 cf2d634 e71ff72 cf2d634 ade1746 cf2d634 e71ff72 4771df5 e71ff72 cf2d634 e71ff72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
language:
- ta
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Tiny Ta - Bharat Ramanathan
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ta
split: test
args: ta
metrics:
- type: wer
value: 30.102694404742998
name: Wer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: ta_in
split: test
metrics:
- type: wer
value: 26.07
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Ta - Bharat Ramanathan
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3096
- Wer: 30.1027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.5622 | 0.2 | 1000 | 0.4460 | 41.4141 |
| 0.4151 | 0.4 | 2000 | 0.3657 | 35.1390 |
| 0.3727 | 0.6 | 3000 | 0.3417 | 33.1723 |
| 0.3519 | 0.8 | 4000 | 0.3252 | 31.9497 |
| 0.3354 | 1.0 | 5000 | 0.3192 | 31.3997 |
| 0.3492 | 0.1 | 6000 | 0.3283 | 31.6966 |
| 0.3229 | 0.2 | 7000 | 0.3211 | 31.1339 |
| 0.3193 | 0.3 | 8000 | 0.3138 | 30.5161 |
| 0.314 | 0.4 | 9000 | 0.3112 | 30.1832 |
| 0.3087 | 0.5 | 10000 | 0.3096 | 30.1027 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|